Data-out Experience and Challenges in Blaise 5

Mohammad Mushtaq, April Beaulé
The 17th International Blaise Users Conference
The Hague, Netherlands
October 2016
Outline

• Study and Background
• Data Extraction/Export
• Transformation – wide to long
• Documentation/Release
About the PSID

- Nationally representative sample of 9,000 U.S. families
- Panel survey conducted since 1968
- Main CATI instrument programmed in Blaise 4.84 and C#.net
- Self-administered web pilot programmed in Blaise 5
Background

• Main survey instrument reprogrammed in Blaise in 2001 and been using Blaise very successfully since then
• Family level interview which collects data on all members of the family via one respondent
• Size and complexity of instrument requires data be extracted by sections (aka ASCII relational format)
• Opt-in web (limited) launched in the Spring of 2015
• Pilot web version launched in 2016
Blaise 5 Data Extraction

• Was it a challenge?
• It’s relative to the size of survey (R’s&Q’s) and data-out format
• Tool used since 2001, Manipula, was not available for Opt-in panel
• ASCII relational output is still not available
• Using wide format, had to reverse engineer data blocks, it was a challenge!
Blaise 5 Data Export - Wide

- From Blaise 5 Control Center
- Home tab: ETL Export Tools be used with caution
- Instead, use Browse Database, Data Viewer tab, and use Export Data
- Demo of data export from Home tab and Data Viewer
Transformation: Wide to Long

- Wide file has 11664 variables
- Import into a SAS table
- Create blocks and sub-blocks
- SAS/Macros to split blocks and sub-blocks by instance
- Stack them all to create long files for sub-blocks
- Sample SAS code
Identify Blocks and Sub-blocks

- Know your study instrument
- Section_A.A3
- Section_A.A5CKPT
- Section_A.A37FOR[1].A37B – loop -1
- Section_A.A37FOR[1].A37C
- Section_A.A37FOR[2].A37B – loop -2
- Section_A.A37FOR[2].A37C
SAS code: foreclosure loop 1 & 2

```sas
data A37FOR_01;
  length SampleId $24 A37FORInstance 3 ;
  set V1.psid15 (keep= Sampleid
    Section_A_A37FOR_1__A37B
    Section_A_A37FOR_1__A37C
    rename=(
      Section_A_A37FOR_1__A37B = A37B
      Section_A_A37FOR_1__A37C = A37C )
    ) ;
  A37FORInstance = 01 ;
run ;

data A37FOR_02 ;
  length SampleId $24 A37FORInstance 3 ;
  set V1.psid15 (keep= Sampleid
    Section_A_A37FOR_2__A37B
    Section_A_A37FOR_2__A37C
    rename=(
      Section_A_A37FOR_2__A37B = A37B
      Section_A_A37FOR_2__A37C = A37C )
    ) ;
  A37FORInstance = 02 ;
run ;
```
SAS Code for sub-blocks

```sas
data A37FOR (drop=rowsum) ;
length SampleId $24 A37FORInstance 3
   A37B
   A37C
; 8

set |
   A37FOR_01
   A37FOR_02
;
rowsum = sum(A37B,A37C) ;
if rowsum > . ;
attrib _all_ label=" " ;
run ;
```

- Wide table: 1489 rows and 11664 columns
- 52 relational tables, 2554 variables
- Indeed, it was a challenge!
Metadata

- Need for data documentation
- Variable type and length
- Questions text, code values and labels
- Available as XML export
- Here comes another challenge;
- Code values are missing from enumerations and sets
Determining a partial interview

- This is a straight-forward task with interviewer administered instrument
- Know when a web interview form has been submitted – but it’s hard to know if they are ‘complete’
- Processing team works closely with researchers to determine acceptable the level of item non-response
- Knowing the number of variables ‘on-route’ is critical to determine if this case meets the acceptable partial threshold
Knowing On-Route vs Off-Route

<table>
<thead>
<tr>
<th>Count</th>
<th>%</th>
<th>Value/Range Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>.54</td>
<td>1 Yes, breakfast only</td>
</tr>
<tr>
<td>217</td>
<td>2.39</td>
<td>2 Yes, lunch only</td>
</tr>
<tr>
<td>1,193</td>
<td>13.16</td>
<td>3 Yes, both</td>
</tr>
<tr>
<td>1,618</td>
<td>17.85</td>
<td>4 No, neither</td>
</tr>
<tr>
<td>17</td>
<td>.19</td>
<td>5 DK</td>
</tr>
<tr>
<td>26</td>
<td>.29</td>
<td>6 NA; refused</td>
</tr>
<tr>
<td>5,943</td>
<td>65.57</td>
<td>0 Inap.: all FU members younger than 5 or older than 18; all children with current age 5-18 not in the FU in 2012 (ER53679=5)</td>
</tr>
</tbody>
</table>

Years Available: [13]ER53680

Index Summary: Family Public Data Index
01>NON-CASH ASSISTANCE
02>Public
03>subset selectors
04>school meals programs, received last year:
05>type, whether:
Using a ‘Box and Arrow’ Questionnaire

F7CKPT. CAI CHECKPOINT: WHETHER ANY CHILDREN AGE 5-18 YEARS OLD WERE IN THE FU IN PYEAR
(FUP1YEAR.AGEIWDATE=5-18)

1. CHILD(REN) AGE 5-18 IN PYEAR FU 5. ALL OTHERS → GO TO F6CKPT

↓

F6AB. And during [PYEAR], did [ONE CHILD IN FU PYEAR: [CYNAMF CYNAML] / ALL OTHERS: any child in [your / the] family between 5 and 18 years old] receive free or reduced-cost breakfasts or lunches at school? If “Yes”: Was that breakfast, lunch, or both?

1. Yes, breakfast only 2. Yes, lunch only 3. Yes, both 5. No, neither

F6CCKPT. CAI CHECKPOINT: WHETHER ANY CHILDREN AGE 15 YEARS OLD OR YOUNGER WERE IN THE FU IN PYEAR
(FUP1YEAR.AGEIWDATE<16)

1. CHILD(REN) AGE < 16 IN PYEAR FU 5. ALL OTHERS → GO TO F7B2CHPT

↓

F7 (F6D). How much did [you and your family living there] / [they / the family living there] pay for child care in [PYEAR]?

• ENTER amount here, then SELECT unit of time on next screen (Week, Two weeks, Month, Year)

$0 → GO TO F7A $1 – 999,997 DK/RF → GO TO F7MO
Write out all skips in SAS

/* section J */
/* A1A rule--mother in house */
/* to fix 2 zeros to NA */
 if J1A='0' and A1A ne '9' and A1A ne '7' then J1A='9';
/* to fix 3 zeros to NA */
 if J2A='0' and A1A ne '9' and A1A ne '7' then J2A='9';
/* to fix 4 zeros to NA */
 if J3A='0' and A1A ne '9' and A1A ne '7' then J3A='9';
/* to fix 3 zeros to NA */
 if J4A='0' and A1A ne '9' and A1A ne '7' then J4A='9';
/* to fix 3 zeros to NA */
 if J5A='0' and A1A ne '9' and A1A ne '7' then J5A='9';
/* to fix 5 zeros to NA */
 if J6A='0' and A1A ne '9' and A1A ne '7' then J6A='9';
/* to fix 3 zeros to NA */
 if J7A='0' and A1A ne '9' and A1A ne '7' then J7A='9';
/* to fix 4 zeros to NA */
 if J8A='0' and A1A ne '9' and A1A ne '7' then J8A='9';
/* to fix 4 zeros to NA */
 if J9A='0' and A1A ne '9' and A1A ne '7' then J9A='9';
/* to fix 5 zeros to NA */
 if J10A='0' and A1A ne '9' and A1A ne '7' then J10A='9';
/* to fix 5 zeros to NA */
 if J11A='0' and A1A ne '9' and A1A ne '7' then J11A='9';
/* to fix 4 zeros to NA */
 if J12A='0' and A1A ne '9' and A1A ne '7' then J12A='9';
/* to fix 5 zeros to NA */
 if J13A='0' and A1A ne '9' and A1A ne '7' then J13A='9';

/* A1B rule--father in house */
/* to fix 8 zeros to NA */
 if J1B='0' and A1B ne '9' and A1B ne '7' then J1B='9';
/* to fix 8 zeros to NA */
 if J2B='0' and A1B ne '9' and A1B ne '7' then J2B='9';
/* to fix 8 zeros to NA */
 if J3B='0' and A1B ne '9' and A1B ne '7' then J3B='9';
/* to fix 8 zeros to NA */
 if J4B='0' and A1B ne '9' and A1B ne '7' then J4B='9';
/* to fix 9 zeros to NA */
 if J5B='0' and A1B ne '9' and A1B ne '7' then J5B='9';
/* to fix 9 zeros to NA */
 if J5B='0' and A1B ne '9' and A1B ne '7' then J5B='9'
Conclusion

• At time of web pilot, ASCII-relational extraction was not available
• Intimate knowledge of PSID questionnaire allowed reverse engineering from Blaise 5 output to Blaise 4.84 output
• Significant effort required for extraction and coding of off-route/on-route skips
• Continue to explore self-administered options for large surveys to reduce costs
• We hope the similar extraction and assignment of ‘skipped’ options in 4.84 will be offered in Blaise 5 soon

Survey Research Center Institute for Social Research University of Michigan
Thank You

Mohammad Mushtaq mushtaq@umich.edu
April Beaulé abeaule@umich.edu