
1

The Many Faces of F1

Siu Chong Wan and Sheba Ephraim, Westat

Presenter: Siu Chong Wan

1. Abstract

The display of help text to interviewers or respondents, depending on the mode of collection, is an

essential feature in Blaise. While we used function keys (F1) for online help in Blaise 4, we have

additional options in Blaise 5.

In addition, we can use the same techniques to display other materials, like showcards, that we often need

in interviewer-administered surveys.

However, what we are going to explore here is not limited to interviewer-administered surveys.

This paper discusses our use of different triggers in Blaise 5 and the types of actions that support the

needs of displaying supplementary survey materials.

2. Triggers

There are a variety of ways for the users to access the help text. While traditionally trained interviewers

might still favor keyboard shortcuts, the growing availability of touchscreen devices makes buttons and

hyperlinks more attractive. We will discuss the triggers that we have tried so far.

2.1 Keyboard Shortcuts

Be it the F1 key again, or any other function key or shortcut key, we can use template events to define

actions that display help text.

This is an example of the “OnF1” event defined in a Master Page Template.

2.2 Menu Items

Using a menu control, we can create menu item events to define actions that display help text. In addition,

we can use the shortcut property in a menu item to define an accelerator key that works just like the

abovementioned keyboard shortcuts.

2

This is an example of the F1 key defined in the shortcut property of a menu item.

2.3 Buttons

Buttons might be one of the most versatile ways to show help text. Depending on what kind of template

the button resides in, we can display help text associated with a page, a field, a response category, or even

a table column header.

This is an example of a button shown as a blue “?” that triggers help text in a Field Pane Template.

2.4 Hyperlink Tag

The hyperlink tag supports the OnClick attribute, where we can define actions that display help text. This

can be defined in the field text alone in the FIELDS section of the data model without defining anything

in the resource database.

3

This is an example of a hyperlink defined in the question text.

3. Actions

There are different actions to display extra reading materials. Here, we focus on ways to open local files,

web pages, and simply extra field text in the current page. While local files can be accessed by the

StartLocalProcess action, web pages can be accessed by the GotoUri action. If we want to remain on the

current page the whole time, we simply hide and show field text.

3.1 StartLocalProcess Action

The StartLocalProcess action introduced in Blaise 5.13 provides a lot of possibility in Blaise 5. As long as

we can find a local program that can display additional materials, we can use it. Here are a few examples:

To display HTML-Help with topic identifier:

{Action StartLocalProcess('C:\\Windows\\hh.exe',

'mk:@MSITStore:C:\\Documents\\Help.chm::/RespondentHelp.htm', '', True, Normal)}

To display a JPEG file in MS Edge:

{Action StartLocalProcess('C:\\Program Files (x86)\\Microsoft\\Edge\\Application\\msedge.exe','--

app="C:\\Documents\\ English_2022_PP_16_593x730.jpg"', '', True, Normal)}

To display a PDF file in MS Edge at a particular page:

{Action StartLocalProcess('C:\\Program Files (x86)\\Microsoft\\Edge\\Application\\msedge.exe','--

app="C:\\Documents\\Help\\LayoutDesigner_Tutorial_PartI.pdf#page=5"', '', True,

Normal)}

3.2 GotoUri Action

The GotoUri action is definitely the way to go when we need to access help text on a web page. As long

as the respondent has access to the internet, we can display anything from a web source. On the other

hand, it can also display local files. Here are a couple examples:

To go to a web page:

{Action GotoUri('https://www.westat.com/about-westat/')}

file://///Microsoft/Edge/Application/msedge.exe','--app="C:/Documents/Help/LayoutDesigner_Tutorial_PartI.pdf%23page=5"
file://///Microsoft/Edge/Application/msedge.exe','--app="C:/Documents/Help/LayoutDesigner_Tutorial_PartI.pdf%23page=5"

4

To go to a local file:

{Action GotoUri('C:\\Documents\\Help\\HTM\\RespondentHelp.htm')}

The advantage of maintaining the material in a web source is that the updates to the web source can be

available immediately. This is particularly good for time-sensitive information. However, the requirement

of internet access could also be a weakness because we do not always have internet access in interviewer-

administered surveys. In other words, the lack of internet access is almost assumed in interviewer-

administered surveys.

3.3 ToggleVisibility Action

One thing we often try to avoid in web surveys is popups. Since we cannot control web respondents’

browsers and cannot disable popup blockers, we usually try to display help text in the current page. In this

case, we do not start any local process or go to any URI. We simply create a text role for the help text and

use the ToggleVisibility action to show and hide the role text.

The predefined text roles “Help” and “ToolTip” are handy for this purpose, but additional text roles can

be defined for additional text displaying needs.

In the default Blaise 5 resource database, a “Help” text role is already defined to work with the

“helpButton” in the Vertical Field Pane Template to show/hide the help text.

<Button Name="helpButton" ... OnClick="{Action

ToggleVisibility('Help')}">

4. Examples

We will discuss in more detail how things work in a few examples.

4.1 StartLocalProcess Action Working with a Menu Bar Item

We first define the text role “HelpFile” in both the resource database and the data model for the name of

the file that stores the help text associated with the field. This will serve as the topic identifier in HTML-

Help.

5

Then we define a menu item in the Master Page Template.

<MenuItem Text="Help F1" Shortcut="F1" Visibility="{Expression IF

Page.ActiveField.RoleTextExists('HelpFile') = True THEN 'Visible' ELSE

'Collapsed' ENDIF}" OnClick="{Action Conditional({Expression

Page.ActiveField.RoleTextExists('HelpFile') = True},{Action

StartLocalProcess('C:\\Windows\\hh.exe',{Expression

'mk:@MSITStore:C:\\Documents\\Help.chm::/' +

Page.ActiveField.GetRoleText('HelpFile') +

'.htm'},'',True,Normal)},'')}" />

We use “F1” in its shortcut property so that both the menu bar and the F1 key work the same way.

We control its visibility based on whether the active field has “HelpFile” role text defined.

In the OnClick event, we use the StartLocalProcess action to run the local program “hh.exe” to open the

HTML-Help file, “Help.chm,” at the page defined in the “HelpFile” role text.

In this example, we define the HelpFile role text as “LIVEUSHelp” so that the StartLocalProcess will run

the local hh.exe program to open the topic identifier “LIVEUSHelp” in the C:\Documents\ Help.chm file.

As a result, the Q1 page shows “Help F1” on the menu bar.

By either clicking the menu bar item “Help F1” or pressing the F1 key, the help window pops up with the

definition of living within or outside the U.S.

6

4.2 StartLocalProcess Action Working with a Keyboard Shortcut

Continuing with what we built above, we add the text role “HelpPage” for the page we want to show in a

PDF file.

In this example, we use page number 30.

We add the shortcut key F3 to the Vertical Field Pane Template.

<Shortcut Key="F3" OnExecute="{Action Conditional({Expression

Field.RoleTextExists('HelpPage') = True},{Action

StartLocalProcess('C:\\Program Files

(x86)\\Microsoft\\Edge\\Application\\msedge.exe',{Expression '--

app="C:\\Documents\\Help\\ Blaise.pdf#page=' +
Page.ActiveField.GetRoleText('HelpPage') +

'"'},'',True,Normal)},'')}" />

This time, in the OnF3 event, we use the StartLocalProcess action to run the local program “msedge.exe”

to open a PDF file in MS Edge at the page defined in the “HelpPage” role text.

In this example, we are showing the Blaise 5 Manual file, Blaise.pdf.

As a result, this page does not need to display any buttons or the menu bar.

7

When we press F3, MS Edge pops up to display page 30 of the Blaise 5 Manual.

4.3 Button to Toggle Role Text Visibility

In web surveys, where we cannot start a local process and in general avoid popup windows, role text fits

the purpose of showing help text. We usually use a button to toggle the visibility of the role text so that

the user can choose to show or hide the role text.

8

In the resource database, we define a “helpButton” in the Field Pane Template where its visibility is

determined by whether the field’s role text “HelpText” exists. Its OnClick event simply shows or hides

the HelpText.

<Button Name="helpButton" Visibility="{Expression IF

LEN(Field.GetRoleText('HelpText')) = 0 THEN 'Hidden' ELSE 'Visible'

ENDIF}" HorizontalAlignment="Center" Background="{Style

HelpButtonBackGround}" Margin="{Style HelpButtonMargin}" Width="{Style

HelpButtonWidth}" Height="25" ScreenReaderText="Help"

ToolTipFontName="ToolTip" OnMouseDown="{Action

SetControlProperty('helpButton','Background','Brush','{Style

ButtonBackgroundSelected}')}" OnMouseUp="{Action

SetControlProperty('helpButton','Background','Brush','{Style

HelpButtonBackGround}')}" Text="?" FontName="HelpButton"

ScreenReaderTextSource="Literal" BorderWidth="{Style

HelpButtonBorderWidth}" BorderColor="{Style HelpButtonBorderColor}"

CornerRadius="{Style HelpButtonCornerRadius}" OnClick="{Action

ToggleVisibility('Help')}">

9

In the data model, we define the role text “HelpText” for the field.

As a result, we have a blue “?” button to the left of the question text.

When the blue “?” button is clicked, help text is displayed below the question text.

This is not limited to the field level. For instance, we can add the same help button and field text in a

category template, and then add role text to the type library so that the help text becomes answer category

level.

10

Although this is usually the way we show help text in web surveys, this can be applied to interviewer-

administered surveys in the same way.

4.4 Hyperlink in Field Text to Display Showcard

In face-to-face surveys, showcards are often used to present information to respondents. Either we choose

to present the showcards on our devices, or simply use that as the means for the interviewers to verify the

correct showcard. There is value in having the ability to display the showcards along with the questions

on the screen during the survey.

This time, we will do everything in the field text and not bother with the resource database.

11

Clicking the hyperlink triggers the StartLocalProcess action to run the local program “msedge.exe” to

open a JPEG file in MS Edge.

5. Conclusions

We have seen many different ways to display supplementary materials.

If the needs are limited (e.g., only help text for a couple questions), we can easily program that in the field

text without extra settings in the resource database.

However, for large surveys that need to show a lot of help text or showcards, maintaining all the external

texts and images outside of Blaise would be more manageable. In that case, setting up text roles, events,

and actions in the resource database up front would be a more efficient way to deal with it. For instance,

we only need to use role text to determine the file name or page number in the field definition, and the

resource database can take care of the rest.

It is worth noting that, as helpful as it is, the StartLocalProcess action works only in Windows, not in

browsers.

12

On the other hand, in web surveys, the rule of thumb would still be avoiding popups, whether we can start

a local process or not. In this case, using field text to show help text is more desirable. It should be noted

that survey designers might need to beware of too much help text displayed on the page that becomes

more of a distraction than a help.

