

1

Table Layouts for Editing

Charles Less, United States Department of Agriculture – NASS

Tables are a versatile tool for organizing and presenting data. They are used to store, sort, filter, and

analyze data. Tables are used to present research findings, compare and contrast data, and summarize

complex information. Navigating the intricate landscape of tables is a critical skill for editors in any

professional setting. Whether you’re dealing with financial spreadsheets, scientific data, or editorial

schedules, tables serve as a structured method for displaying complex information in an easily digestible

format. As simple as they may appear, tables require a keen eye for detail, clarity, and coherence to

maximize their impact and usefulness. For USDA/NASS’s purposes, we use tables to collect data by

topic/agricultural commodity and for editing data by the same standard.

1. Blaise 4 Tables at a Glance

Ever since Blaise 4 was implemented for USDA/NASS, tables have served a very useful purpose for our

editing. Tables in Blaise 4 allow for organizing data more efficiently, allow more fields on a page, and

assist our statisticians in editing/reviewing data for various commodities in one page. In Blaise 4, we had

the luxury of the Popup Record Error Listing and Involved Fields, along with our table, to quickly and

effectively edit/review data. Figure 1 shows an example of the use of tables in Blaise 4. Here, data are

collected on the pounds sold, average price per pound, and total dollars received for various types of

tobacco sold, either through contract or through auction houses. Notice from the figure, developers did

not have to contend with the table spacing to fit a check or signal within the rows or at the table level.

Figure 1. Table Editing Environment in Blaise 4

2

The code to implement a table is straightforward. Tables in Blaise 4 are in full use, and one merely had to

apply it in the code by declaring the table (TABLE tbPrice) and adding the appropriate blocks (bInquiry)

within the table, and then efficient tables for Interviewing and Editing were ready. Figure 2 below shows

an example of how the table storing the tobacco information is stored by type and by point of sale.

Figure 2. Table Code Blaise 4: Declaring a Table

For editing in Blaise 4, the Popup Record Error Listing and Involved Fields are great for editors to handle

error review. Along with the table, space was not an issue for reviewing errors. Users could easily resolve

warnings, and the error listing allowed quick access to the ‘involving’ field. With Blaise 5, the missing

error listing box posed a challenge.

2. Enter Blaise 5

Developing Blaise 5 tables with the Layout Editor took considerable effort to format the tables in a more

logical presentation to our editors. Equipped with the samples provided by Statistics Netherlands, we

used/borrowed some work from the samples to create our table layouts and planned to create a

documentation for our developers to use when implementing tables in their own projects. As with many

things at NASS, much customization is required between different surveys.

3

USDA/NASS conducts many regional and national surveys during the course of a year, and there are

many opportunities to implement tables. We decided to implement tables in Blaise 5 for editing a small

survey that occurs twice a year and has a small sample. The survey was able to implement a table, and

editors had a small enough sample to meet their due date for finishing the editing and making corrections.

The table layout developed would only have 10 rows and a small number of columns. Edits would exist

involving fields in these tables (groups) and display for calculation issues or violating our external edit

limits, which are also used in this survey.

For Blaise 5 coding, we start with the Group declaration. See Figure 3. Once the Group is coded, the table

template(s) are at our disposal. The example shown in the figure comes from a survey designed to

forecast the number of turkeys raised in the United States based on poult placement at the state and

national level. There are operations that are large enough that they report. In this table, each row can be

used to report poult placement by state. Each row has the same number of columns, as the questions are

the same for each state.

Figure 3. Blaise 5 Code for Setting Up Table Layout

4

Figure 4. Table in Layout Tab

The approach taken was to set the Layout instructions for the table using the Layout tab in the Control

Centre and the Blaise Resource Editor, then start with the first row of that table. Depending on the

uniformity of that row in relation to the following rows in the questionnaire we use (Figure 4), one could

make use of the first row’s layout instructions and parameters being set in the layout editor, and then cut

and paste the other rows accordingly within the instrument’s Source tab in the Control Centre.

Figure 5. Uniform Table and Small Number of Columns

5

3. Trials and Tribulations

When first using the table layout, we started going through each row using the Layout tab and setting the

properties. As Blaise 5 developers know, if you strictly use the Layout tab and the Blaise Resource Editor,

the development could be a very long task to complete a layout. As shown in the Figure 5 table and

columns, we could use the Layout tab and get away with setting properties. We only had to set the layout

instructions and parameters for 10 rows. Even with 10 rows, this was tedious work within the Layout tab

of the Control Centre when setting the properties in the Layout tab and having it sync to the code in the

Source tab.

As we gained more knowledge of adjusting the rows to our liking, we could synchronize the layout for

that first row to the source and then use that first row to cut and paste. Or in this case, since it was an

array, one merely had to edit the first row to be a generic layout instruction for all rows for this survey.

In the code, we were able to use that first row to create instructions for that row (State [101]), and then

adjust it with an open set of brackets for all rows in the Group. See Figure 6, Figure 7, and Figure 8.

At the Block level (that is called from the Group code):

Figure 6. Row and Cell Level Layout Instructions

6

At the Group code level (displaying the open set of brackets to handle every row):

Figure 7. Table-Level Layout Instructions

At the Main Block level (where Group is located):

Figure 8. Main Bloc Layout Instructions

4. Displaying Error Text in Tables

As previously mentioned, USDA/NASS relied heavily on the Popup Record Error Listing and Involved

Fields to handle error displays, as well as using the jump to fields to resolve CHECKS with Blaise 4.

As developers/layout designers, we had to make ‘space’ for error messages within the table environment.

Blaise 5 allows developers to display checks and signals at the table level and at the row level. See Figure

9 and Figure 10 We have used both for recent surveys and the results are mixed. Showing too many of the

same errors caused editor fatigue. An editor can be overwhelmed with row and table both displayed,

giving the appearance of having a lot of editing work to do. Also, because these tables can display many

checks/errors, the table-level checks/errors could not fit within a user’s screen. As these checks/errors

were resolved, the listings at the bottom of a table were gradually reduced.

7

Figure 9. Table/Group Error Listing Display Settings in Layout Tab

8

Figure 10. Row-Level Error Listing Display Settings in Layout Tab

When the table-level errors settings were used, the error displayed at the bottom of the table. See Figure

11. When the row-level error settings were adjusted, the errors for each row would appear. See Figure 12.

Figure 11. Table-Level Error

Figure 12. Row-Level Errors

5. Problems with Complex Tables

With our limited success in setting up editing with a small survey, an attempt was made on a survey with

large tables and a lot of columns. Hawaii has a Tropical Specialties Survey with a multitude of crops

grown. See Figure 13. We wanted to use this specific survey to see how the edit would render. My

attempt to adjust to large tables caused issues with our editors seeing the big picture. For our situation, the

number of columns would not fit our layout appearance. One could resolve long tables with a multitude of

crops with scroll bars, but it had a difficult time adapting to columns. See Figure 14. We implemented

horizontal scroll bars, but the error listings involving the crop label and columns for processing were not

helpful for the editor. It was recommended to insert a single column table, but time ran short to institute

9

that table, and even if that table was inserted, it doesn’t guarantee that the crop name row would align

with the data.

Figure 13. Hawaii Tropical Specialties

Figure 14. Table Edit Rendering

10

Figure 15. Continuation of Table Rendering

6. Shortcomings (The Troubles with Tables)

Table editing continues to be slow. Saving updates can take several seconds per field. Additionally,

USDA/NASS utilizes a Generic InDepth data storage type pointing to MySQL, and we are left wondering

if server contact can also be a concern. We also operate within a Citrix environment, and we wonder if

that could also create issues. It was recommended that we change our settings to have changes saved at

the page level to handle this lag in saving updates; however, there are calculations that need to take place

to make sure some columns total correctly at that page level. We initially instituted a page save through

the Data Entry Settings Tab, but got into trouble when editors made updates, thought they were clean, and

saved the form, resulting in the record’s ValidationStatus appearing as dirty.

Because we no longer have the Popup Record Error Listing and Involved Fields, we had to resort to a

layout page that displays the ‘error list box.’ Jumping from the error list box to an ‘involving field’ that is

a table field is also a slow process and can take several seconds to land on said field.

The lag in table saving can pose challenges to our editors, as much of our data comes in toward the end of

a survey. We give our enumerators in the field and our statisticians a window to account for data, and

sometimes that window is stretched due to weather conditions or farm operator availability. Editing a

large amount of data stored in tables like these at the end of that short survey window can pressure our

statisticians.

Space is also an issue. One of the surveys that we implemented tables on was a survey that had many

sections and columns. Due to lack of space, we had wanted to use a freeze column, but the layout does

not have that to implement. We did have conversations with Statistics Netherlands, and since the table

layout is not a not a true table, it does not have that column freeze attribute. To compensate for the lack of

a hold/freeze column, we had to resort to the use of a horizontal scroll bar to allow editing for some

columns that needed to be edited, and this caused some consternation as the reviewers/editors lost track of

what crop they were reviewing.

7. Conclusion

In this paper, we have discussed the use of table layouts for editing data. We have seen that Blaise 5

offers much flexibility to display tables in very useful and appealing ways. We can use tables effectively

to display reported data, as well as metadata, and we are able to effectively use small tables for editing.

We do continue to struggle with larger tables where there are large numbers of rows and columns that

11

require a lot of editing for cell values for a row. Our agency hopes that the software will evolve to be

more efficient at allowing field updates. If not, our developers will need to find better ways of handling

updates. Alternatively, our agency can rethink how Blaise 5 fits into our data analysis. Finally, we can

also seek input from other organizations on how they effectively use table layouts with their editing

strategies.

