
1

Speedy Incentives from Blaise 5 Instruments

Emily Caron, Jerry Copperthwaite, and Rhymney Weidner, RTI International

1. Abstract

One of the popular ways to encourage respondents to complete a survey is to provide them with a

monetary incentive. Blaise 5 does not have a direct way to instantly send incentives to respondents, but by

leveraging existing Blaise functionality and PowerShell scripts—along with a separate, specially

developed system—we were able to implement “instant” incentives for a recent project. The respondent

was able to receive a digital incentive within minutes of completing the survey. This paper will examine

features utilized in Blaise 5 and provide a brief explanation of the accompanying scripts and other pieces

involved that made this feature possible.

2. Introduction

One of the best ways to encourage respondent participation in a survey is to provide a monetary incentive

for completing it. In the past, these incentives were provided by RTI either via a mailed check or an e-gift

card. E-incentives were processed by overnight batch jobs, which resulted in a delay of roughly 24 hours.

Mailed incentives were slower and took up to a few weeks to reach respondents.

Recently, RTI endeavored to implement a “speedy” incentives process, which enabled respondents to

receive an incentive via email or text within minutes of completing the survey if one of those digital

delivery methods was selected. These incentives came in the form of an e-gift card that could be retrieved

via a link included in the email or text (as selected by the respondent). This paper will cover the

specialized process developed to trigger these incentives, focusing on the Blaise 5 features utilized to

hook into the backend processes that take care of delivering the incentives. We will also outline some of

the challenges encountered and lessons learned while implementing this process.

3. High-Level Overview of the Speedy Incentives Process

Figure 3a. An Overview of the Speedy Incentives Process Flow

2

The processes in the Figure3a diagram flow from the FIPS Moderate (FIPS Mod) side of the firewall to

the FIPS Low side. Our FIPS Mod network is a standalone, dedicated network that employs a highly

restrictive set of security controls and requires multifactor authentication. This is where the Blaise-

collected survey data are stored. The starting point of the speedy incentives process is the Blaise survey,

which contains logic to write incentive metadata to a SQL database table. The next process is a Listener

Application that runs in the background in the FIPS Mod network and contains a timer to query the SQL

database table for new incentive records inserted via the Blaise survey.

If a new record is found, an insert function of a web service located in the FIPS Low network is called to

load the incentive metadata to a corresponding SQL database table. Next is another Listener Application

that runs in the background in FIPS Low. This process contains a timer to query the SQL database table

for new incentive records inserted via the web service. If a new record is found there, the process calls an

incentive API to purchase a new incentive, which is then sent to the respondent via email or text.

A Simple Mail Transfer Protocol application is used for building and sending the email messages, and an

in-house ARTEMIS application builds and sends the text messages. The email and text messages contain

a link for respondents to claim their incentive via Tango®, where they have a number of choices for

“cashing in” their incentive amount.

Figure 3b. Example Screen for Redeeming Incentives

3

4. Blaise Features Utilized to Trigger Incentives

The first implementation of the speedy incentives process triggered by a Blaise survey was in a survey

designed in version 5.12.8. Triggering the incentive required a specialized template, a call to a

PowerShell script from an actions setup function, and a call to a stored procedure from the PowerShell

script.

While developing the templates for the incentive process, we had to determine at what point we wanted to

send the incentive and how we could prevent duplicate incentive attempts. Even though the backend

processes contained checks to prevent duplicates, we wanted to avoid unnecessarily triggering any of

these from Blaise in the first place. First, it was decided that the incentive should be sent as soon as the

respondent completed the screens containing incentive questions. This location was towards the end of

the survey, although it was not required that respondents fully complete the survey to receive the

incentive. The respondent could elect to receive their incentive either via email or text (digital delivery) to

be eligible for a “speedy” type of incentive. Other options not involving this new process included

receiving the incentive via mail or choosing not to receive any incentive.

Figure 4a. Incentive Delivery Options

After selecting one of the digital incentive methods, the respondent is routed to a screen where their email

address or cell phone number is collected, depending on which delivery mode was selected. This is

followed by the appropriate screen routing to confirm the email or cell phone number, which also serves

as verification of consent for this type of contact. On these confirmation screens, a special

“SpeedyIncentive” template is used to trigger the actions setup process from the

OnTryLeavePageForward event. On the screen immediately following the confirmation screens, the

“Back” button is removed to prevent respondents from backing up and retriggering the actions setup.

Figure 4b. The SpeedyIncentive Process is Triggered in the “OnTryLeavePageForward” Event of a Special Master Page

Template

4

Figure 4c. Confirmation of Email Address After Email Incentive Is Selected; When the Respondent Selects “Yes” and

Clicks “Next,” the SpeedyIncentive Process Is Triggered

The speedy incentive template is automatically assigned to appropriate fields using an applicability

condition on the template. Each field that should trigger a speedy incentive has “SpeedyIncentive” in the

Templates role.

Figure 4d. This Applicability Condition Ensures That All Fields with “SpeedyIncentive” Included in the Templates Role

Are Assigned the Speedy Incentive Template

The “SpeedyIncentive” process is in the “Actions Setup” file defined in the project settings and mapped

using Blaise 5’s “Mappings Management” screen. The process pulls the relevant information from the

active survey using the SURVEYRECORD file definition. This information is then passed to the

PowerShell scripts, as shown in Figure 4e.

5

Figure 4e. Code in the Actions Setup Process That Calls the PowerShell Scripts

Figure 4f. The Process Must Be Mapped to a Function Declaration in the Resource Database to Be Called from the

Appropriate Template

The PowerShell script then makes the final call to the stored procedure that will insert an entry to a

specific SQL database in the FIPS Mod network. The information added to the table includes case ID

with attached language indicator (surveys conducted in multiple languages aren’t an issue), confirmed

email or cell phone number, a placeholder value for the full name (since the resulting text message or

email does not include the respondent’s name in this case), the Blaise GUID (for identification purposes

since the table is shared with other surveys), and the amount of the incentive to be sent. The Listener

Application will pick up new incentive information from this SQL table and kick off the rest of the

process discussed in Section 3, “High-Level Overview of the Speedy Incentives Process.”

5. Challenges and Lessons Learned

5.1 Initial Setup and Testing Challenges

Initial challenges in the FIPS Low environment where we conducted testing included getting an

appropriate PowerShell script programmed to trigger the insert into the stored procedure. We iterated

through a number of test attempts while tweaking the call, both to adjust the syntax in general and to

account for passing new parameters when new information was found to be needed in the incentives

database—namely, for language indicator and GUID.

We also had trouble with the mapping of the actions setup function. Blaise 5 appeared to drop the

mappings frequently, so we consistently checked to make sure it was still mapped correctly and remapped

when needed.

6

After moving programs into the FIPS Mod network, the first set of tests for our new process was

unsuccessful. Once we had confirmed everything in Blaise was running as expected as part of

troubleshooting, we tested the PowerShell script by running it manually. Attempts to run the PowerShell

script manually resulted in the error shown in Figure 5a. The firewall required modification to allow

communication between the server hosting the Blaise instrument and the server hosting the SQL Server.

After proper ports were opened, the process was successful.

Figure 5a. The Error Message Displayed When Initially Running the PowerShell Script from the Webserver to Insert into

the SQL Table for Speedy Incentives

5.2 The Importance of Thoroughly Testing All Layout Sets

One of the most important lessons learned from implementing the speedy incentive process is that all

layout sets need to be thoroughly tested for speedy incentive functionality. Our process relied on the

PowerShell script being triggered by a function associated with a specific template. Without that template,

the entire house of cards would collapse, and the speedy incentives wouldn’t go out.

Initial instrument testing was heavily focused on the large layout set due to 508-compliance needs and

testing out special text and functionality related to CATI mode. The small layout set was tested, but fewer

test cases went through the small layout set, and unfortunately, it appeared most testers did not select

digital incentive modes. Shortly after launch, it was discovered that surveys completed in the small layout

set were not receiving digital incentives. While implementing the speedy incentive template in the small

layout set, there was an issue with hierarchy that originally went unnoticed. The speedy incentive

template was below the default Master Page template, which led to screens that should have had the

speedy incentive template receiving the default Master Page template instead. Incentives are not triggered

on the default Master Page template, which meant these small layout set cases were missing a key step in

the speedy incentive process.

Figure 5b. On the Left Is an Image of the Incorrect Hierarchy for Master Page Templates; This Hierarchy Allowed the

Assignment of the “Default” Master Page Template Prior to the Applicability Condition on the SpeedyIncentive

Template Being Considered; The Image on the Right Shows the Correct Hierarchy for the Master Page Templates

7

As soon as this issue was discovered, an update was released with this slight, but very important, error

correction. Yet another lesson for future development: make sure to double check the assigned template

for key fields when functionality is dependent on the correct template.

Once the error was corrected, queries were run against the survey data and speedy incentives dataset to

pinpoint cases that had elected to receive a speedy incentive but had no entry in the speedy incentives

table. We manually triggered incentives for these cases by constructing appropriate calls to the

PowerShell script to insert the data into the speedy incentives table. The queries used to find cases

missing from the incentives table became part of future, regular quality check routines to ensure that the

speedy incentives process continued to work as expected once the small layout set was fixed.

Another lesson learned from this mistake is that the number of respondents using mobile devices to

complete the survey was far higher than expected. Based on the number of missing incentives, over 50%

of cases were being completed on a mobile/small screen device. Future surveys should include an equal

amount of testing between the large and small layout sets.

5.3 Consider Carefully When Events Are Executed

After the correction was made for the small layout sets not receiving incentives, another issue was

discovered. When respondents attempted to move forward without selecting a response on the email

address or cell phone number confirmation screens, a double entry was made in the speedy incentives

table. This issue stemmed from a misunderstanding of where the OnTryLeavePageForward event was

called. It was assumed that this event was not called until just before the page was left, but it was also

triggering as soon as the “Next” button was clicked. This resulted in the speedy incentives process being

called twice in situations when an error occurred on the page. An entry for the case was inserted when the

error was triggered, and then inserted a second time when the respondent corrected the issue and was able

to move forward.

Fortunately, the backend processes ensured that only one incentive was sent per case in these situations.

To correct this issue, another build was released with a conditional statement checking to make sure no

errors existed on the page prior to calling the speedy incentives process. The corrected

OnTryLeavePageForward event is shown in Figure 4b. The conditional statement was added to make sure

the SpeedyIncentive process was not triggered until any errors on the page got resolved.

6. Future Uses and Potential Enhancements

The backend processes involved (refer to Section 3) were set up to handle receiving entries into the

speedy incentives database not only from Blaise software, but also from other survey data collection

systems utilized by RTI International, which makes the process flexible enough to serve a wide array of

projects.

We foresee future projects making use of this speedy incentive process, as it adds a new layer to the

methodologies behind incentives by rewarding the respondent with a form of immediate gratification. Our

survey included a household screener component followed by a selected respondent survey, so we felt

getting the incentive into the hands of the screener participant ASAP would be highly encouraging for

participation in the survey component.

Situations where sending other timely digital communications to respondents during or immediately after

their survey would be useful could also be considered for this process. A couple of examples: (1) specific

8

reminders to the respondent or someone in their household for completing additional surveys; (2) handing

another portion of the survey off to a coworker as part of a business survey where different sections are

completed by various individuals. As clients approach us with challenging criteria for complex surveys,

we will have this process available in our toolbox.

7. Conclusion

We are continuing to monitor this new speedy incentives feature and will be analyzing results of its use.

For example, it will be interesting to review survey component participation rates for cases where the

screener respondent opted for a digital incentive vs. a mailed incentive or no incentive. Lessons we

learned will surely be applied to future projects that implement this feature.

