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1. Abstract 

Paradata has proven key to managing dynamic data collections, as we can use the paradata to identify and 

measure nonresponse and measurement errors. However, paradata contains large amounts of unstructured 

data, and it can be resource-intensive to extract and structure the data. We therefore found that we needed 

a robust and efficient process for extracting, cleaning, storing, and analyzing paradata. Using Python with 

Google Cloud Storage services, we created a data pipeline that synchronizes paradata from Blaise daily, 

parses it, and stores it in the cloud. By having up-to-date paradata, we can gain insightful information 

about the data collection process as it progresses. For instance, using Audit Trail data with sample data, 

we assess nonresponse bias for different demographic groups. Likewise, by using Dial History data, we 

analyze the outcome of each call and initiate measures based on their effectiveness. To make information 

about the data collection available to all stakeholders, irrespective of coding experience, results from the 

paradata analysis are shared to an internal web page that is updated daily. By creating an automatic 

pipeline that allows colleagues to evaluate the data collection process, we have made it easier to make 

data-driven decisions that adjust for bias and measurement errors. Because we use Python, which is an 

open-source programming language, aspects of our pipeline can be implemented by others without any 

cost. Similarly, we hope that sharing the journey of how we created the pipeline and the benefits we saw 

from it can be useful for other Blaise users.  

2. Introduction 

Data collection demands significant resources in terms of both cost and time, and it is therefore important 

to understand how to improve data collection processes. Paradata can be used to understand respondent 

behavior and enhance survey questionnaires to gain higher survey quality, as well as to monitor and 

identify areas for improvement to effectively manage data collections dynamically (Kreuter, Couper, & 

Lyberg, 2010). At Statistics Norway, we have used paradata from Dial History and Audit Trail, and we 

will refer to these data sources when we use the term paradata. These data sources include all call records, 

actions that the interviewer and respondents perform in the survey, and the timestamps for these actions. 

Post-survey analyses of paradata will help us understand how to improve the data collection process for 

next time. But by using real-time, or nearly real-time, paradata, we can help stakeholders to make changes 

during data collection in ongoing surveys (Schouten, Peytchev, & Wagner, 2017). While there are 

numerous uses of paradata (see Hunt, 2016; Cheung et al., 2016; Kreuter, Couper, & Lyberg, 2010) at 

Statistics Norway, we have focused on developing the use of paradata in two main areas:  

• Improving survey questionnaires by understanding respondent behavior in surveys.  

• Dynamic management of surveys by monitoring and adjusting for nonresponse bias. 

When we started using paradata, the initial step was to export paradata from Blaise, and here we noticed 

challenges concerning the sheer volume of data and database access. Querying Audit Trail data from large 

surveys demanded a substantial share of the server capacity, resulting in slower loading time for 

interviewers. Secondly, we faced challenges related to database access because colleagues outside of the 

Blaise developer team required access to the paradata. However, as the database with the schemas for 

Audit Trail also included other schemas, it was unideal that too many individuals would be given access 
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to the database. Subsequently, only a limited number of colleagues were given access and could export 

Audit Trail and Dial History data. Moreover, the individuals who could export paradata had to be cautious 

about the amount of data they exported while also aiming to export the data during periods when few 

interviewers were active to avoid slow loading speed for interviewers. Thus, we realized that we needed 

to develop an alternative solution that would facilitate easier access to paradata. 

The team tasked with utilizing paradata had several objectives, one of which was to provide colleagues in 

the department with an up-to-date overview of the data collection. We started by developing Python 

programs that would generate data collection reports using call history data from Dial History. However, 

the program reports were not widely used, mainly due to some colleagues perceiving Python as a barrier 

due to their unfamiliarity with the programming language. Additionally, considering the sensitivity of 

paradata, we wished to provide stakeholders with reports without giving them access to the data itself, 

which was required to run the program reports. To achieve this, we recognized the need to create a way to 

share reports without requiring users to run the program or access the data. Thus, we set out to create a 

web page with aggregated results over the data collection. 

Furthermore, as some colleagues wished to analyze the data themselves, we saw that starting from scratch 

with each analysis would be inefficient. We therefore developed small Python program modules that 

could assist users with analyzing the paradata. To ensure accessibility and to encourage more reuse of 

code, all team members work within one GitHub repository. By developing programs that should work on 

all instruments and require little coding expertise to run, we have created a versatile solution that can 

accommodate the needs of colleagues who are involved in different parts of the data collection process. 

By establishing this pipeline, project managers would receive better support in dynamically managing 

data collection, and survey methodologists and Blaise developers could more easily access and analyze 

paradata, facilitating data-driven decisions to improve surveys. 

One of Statistics Norway’s digitalization strategies includes implementing Cloud Services and making the 

shift toward using open-source programming languages. Thus, when creating this pipeline, we decided to 

use Google Cloud Services and develop the programs in Python. However, aspects of this pipeline can be 

implemented without the use of Cloud Services. The first part of the article illustrates an overview of the 

pipeline structure. Next, we share some experiences of how paradata has been used by project managers 

and survey methodologists to dynamically manage data collection and to improve survey questionnaires. 

Finally, we summarize the positive effects we have seen from implementing the pipeline and discuss our 

plans for enhancing the pipeline. 

3. Paradata Pipeline 

In this section, we will explain how the pipeline is set up. The program code we have used for the pipeline 

is included in the Appendix. The initial step of the pipeline involves exporting data from our on-premises 

Blaise server. Next, data is exported to a storage system in the Google Cloud Platform (GCP). Then, the 

following steps of the pipeline are completed using solutions from Statistics Norway’s new cloud-based 

data platform (DAPLA). In short, the bullet points below and Figure 1 summarize the steps of our 

pipeline:  

• Exporting data from Blaise to GCP  

• Transferring data from the source bucket to the production bucket in GCP 

• Developing reports and programs in JupyterLab 

• Sharing daily results to the internal web page 

Dial History data is parsed in Step 1, and Audit Trail data is parsed in Step 2. 
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Figure 1. Pipeline from Blaise to GCP 

 
 

Before explaining the steps in the pipeline, we will first outline the storage structure we use in GCP.  

3.1 Using the Google Cloud Platform Structure 

In the GCP, a “bucket” is a unit for containing data that serves the same purpose as a folder. All data in 

Google Cloud must be stored and organized within these buckets. Essentially, a bucket functions as a 

structured folder, facilitating the organization and management of different data files. Moreover, we have 

two buckets for different data structures: unmanipulated and manipulated data. By using different buckets 

for unmanipulated and manipulated data, we can keep backups of the unmanipulated data where only a 

few individuals have access. Since the unmanipulated data are the basis for all our analysis and 

manipulation, having this data in a separate bucket ensures that we have a reliable reference point. 

3.1.1 Source Bucket 

The source bucket contains unmanipulated paradata from Blaise and select categorical sample data 

variables, such as age group, region, education level, and gender. Only two people have permission to 

read, write, or delete files in this bucket.   

3.1.2 Production Bucket 

In the production bucket, we store manipulated data from the source bucket and data with the select 

sample variables. Only colleagues who need to use these data are given access to read, write, or delete 

data in this bucket.  



4 

 
 

3.2 Exporting Data from Blaise to Google Cloud Platform 

The paradata files are exported from the Blaise databases and then stored as CSV files on an on-premises 

server. To export the paradata from Blaise, we use Code 1 (see the Appendix) for Audit Trail data and 

Code 2 (see the Appendix) for Dial History. We use Crontab to automatically schedule the export of the 

paradata each night. We then use GCP’s tool “transfer job” to automatically transfer the data from our on-

premises server to the source bucket in GCP. Once this step of the pipeline is completed, Audit Trail data 

and Dial History data are stored as CSV files in the source bucket.  

3.3 Transferring Data from the Source Bucket to the Production Bucket in GCP 

The next step in the pipeline is to transfer data in GCP from the source bucket and store it as Parquet files 

in the production bucket. We have utilized a solution created by Statistics Norway’s data platform team 

that uses Cloud Run in GCP to automate this step. The solution allows a team to write a script that is 

triggered when a new file is added to the source bucket. For the Audit Trail data, we have developed a 

script (see Code 3 in the Appendix) that reads the data from the source bucket, parses the data, and then 

stores the parsed data in the production bucket. Similarly, for Dial History data, we have developed a 

script that reads the CSV file from the source bucket and stores it as a Parquet file in the production 

bucket. 

3.3.1 Parsing Audit Trail Data 

As the Audit Trail data from Blaise is inadequate for effective analysis, we have parsed the paradata to a 

structure more suitable for analysis using a script we refer to as the paradata parser (see Code 3 in the 

Appendix). In the unmanipulated Audit Trail–level data, shown in Table 1, we can see that the “Content” 

column contains information about the action. The content of the “Content” column is structured as 

XML-formatted data.  

To extract and structure the information in the “Content” column, we use the Python XML package 

xml.etree.ElementTree. The paradata parser script processes the XML content in the “Content” column of 

the input dataframe, extracting attributes and tags, and creates a new dataframe with the columns “event”, 

“KeyValue”, “TimeStamp”, “SessionId”, and “InstrumentId”, in addition to columns from the attributes 

as shown in Tables 2 and 3. The parser iterates through each row, creating a new column for each new 

attribute and adding the attribute’s value to the corresponding row. Each tag represents an event type and 

is included in the “event” column. The paradata parser organizes the data into the structure shown in 
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Tables 2 and 3. To enhance readability, the data is split into two separate tables. Also, the column “OS” 

would contain more information, but for viewing purposes, the text has been shortened. 

Table 1. Audit Trail Data from Blaise 

 
 

Tables 2 and 3. Parsed Audit Trail Data 

 

 
 

An advantage of the paradata parser, in contrast to programs that are dependent on regular expressions or 

fixed string/column position to extract information from the “Content” column, is that the paradata parser 

automatically creates new columns as it iterates over the data and encounters new attributes. This 

flexibility ensures that the program can process data with different Audit Trail–level settings. The 

paradata parser program has worked with data that has “Page”, “Field”, and “Keyboard” as the Audit 

Trail–level setting. By utilizing the paradata parser, the pipeline can process all our surveys, each 

potentially having different Audit Trail–level configurations, thus ensuring flexibility. 

Briefly summarized, each night, data is extracted from Blaise using Crontab and then stored in the GCP 

source bucket. Subsequently, the paradata parser script (see Code 3 in the Appendix) and the solution 

offered by Statistic Norway’s data platform team are employed to parse and transfer the data to the 

production bucket. As a result, we have updated data that is ready to be analyzed each day.  
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3.4 Developing Reports and Programs in JupyterLab 

We access and analyze the paradata in a JupyterLab environment within Statistics Norway’s cloud-based 

data platform. JupyterLab’s interactive computing environment allows us to combine code, visualizations, 

and explanatory text in a single Jupyter Notebook. The development of new program reports and our web 

page is done in the JupyterLab environment in Statistics Norway’s cloud-based data platform.  

As we focus on developing scripts that contain standardized code that work with all surveys, all team 

members work within one GitHub repository and aim to develop analyses that can be run on various 

surveys. Moreover, we use Poetry, a tool for package management in Python, to ensure that every team 

member works with the same set of libraries. By using Statistics Norway’s JupyterLab environment and 

using GitHub for version control, team members find it easy to collaborate on developing code. 

When we initially started to analyze paradata, we often found ourselves repeatedly writing and running 

code for the same or similar tasks when analyzing the data. Therefore, our team decided to focus on code 

modularization. Code modularization involves creating modules, which are self-contained units of code 

that promote reusability and organization. Thus, we aim to identify repeated tasks and write this into 

modules. The infrastructure of our GitHub repository is set up to be flexible for the user, with modules 

stored within one folder so they can be imported and used when the user is working in the Jupyter 

Notebook. Thus, code does not need to be copied and pasted between users or Jupyter Notebooks. For 

instance, two modules are frequently used when analyzing paradata: data query and paradata 

manipulation. 

As data from each day is stored as separate files in the production bucket, we have created a program (see 

Code 5 in the Appendix) that queries all the data for a specific survey. The program allows colleagues to 

query all the data for the specific survey anddata in between two dates, before a specific date, or after a 

specific date. 

Moreover, the data obtained from the paradata parser may sometimes be insufficient for direct analysis, 

so we made a module (see Code 4 in the Appendix) to manipulate the paradata, creating a more suitable 

structure for analysis. The module performs various operations, such as sorting observations by SessionId 

and TimeStamp, filling values of PageIndex and FieldName, and creating a new column labeled 

“diff_time” to calculate time frames between consecutive observations within each session. The Tables 3 

and 4 show how the paradata looks after applying the module. For viewing purposes, the dataset is split 

into two tables. 

As we aim to continually enhance manipulation processes and conduct quality checks on our programs, 

we wished to minimize manipulation of the paradata in Step 2 of our pipeline and to instead perform data 

manipulation in the JupyterLab environment in Step 3. This approach ensures uniformity in the structure 

of data within the production bucket while we continually develop our code for processing and analyzing 

paradata. 

3.5 Sharing Daily Results to Internal Web Page 

We wished to make it easier for project managers and field staff to see an updated overview of the data 

collection. Moreover, it was important that seeing daily results should not require any coding skills or 

access to the actual data. Thus, we decided to create a web page where we could share reports with key 

metrics for the data collection. 



7 

Tables 3 and 4. Manipulated Paradata 

 

 
 

We developed the internal web page by using Quarto1 and host it with GitHub Pages.2 Quarto is an open-

source solution that combines markdown text and executable Python or R code. When rendering a Quarto 

file, code is executed, and the output of the code and the markdown text is rendered to HTML files. The 

collection of HTML files is combined into a complete web page that is hosted with GitHub Pages. As the 

web page is static, we update it every day by rendering and publishing the complete GitHub repository 

using Quarto’s render and publish commands. By using Quarto, we can utilize the Python reports we 

create in Step 3 in the JupyterLab environment and then transfer the code to Quarto files for our web 

page. 

Figure 2 shows a screenshot of our web page with key metrics for ongoing surveys. Each survey 

instrument is represented on the left, and the user can click on the page to view the instrument they wish 

to see. The figure shows four different figures of CATI time use for the instrument. On the right, we can 

see an index of the possible reports available for the instrument.  

Quarto and GitHub Pages were chosen due to their ease of use, thereby reducing the need for IT support 

during setup. Furthermore, GitHub Pages guarantees restricted access solely to authenticated employees 

of Statistics Norway via their GitHub accounts. While we aim to build a more comprehensive solution in 

the future, such as an interactive dashboard application, the current solution accomplishes our main 

objective: sharing results and an overview of the data collection process to colleagues without the need 

for coding or access to the data.  

  

 
1 https://quarto.org/ 
2 https://docs.github.com/en/enterprise-cloud@latest/pages/getting-started-with-github-pages/about-github-pages  

https://quarto.org/
https://docs.github.com/en/enterprise-cloud@latest/pages/getting-started-with-github-pages/about-github-pages
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Figure 2. Screenshot of Our Internal Web Page 

 

 

4. How The Pipeline Is Used 

Creating the pipeline allows colleagues to see daily updates of the data collection. Additionally, because it 

is easier to access structured paradata, colleagues can complete their own ad hoc analysis or use 

predefined programs to run reports. The section below includes examples of how colleagues use paradata 

to evaluate survey questionnaires and dynamically manage data collection.  

4.1 Survey Project Managers—Dynamic Management of Surveys 

An important responsibility for survey project managers is to continually monitor and manage data 

collection, for example, by adapting to the amount of interviewer resources available. Having daily 

updated paradata and sample information can be very beneficial for survey managers. As we have had 

several survey project managers involved in the development of the pipeline, they have effectively started 

analyzing paradata and developing reports for the web page. 

We have used Dial History data to create key metrics that are used to monitor the data collection process. 

Dial History data contains information about the most important indicators used to supervise the data 

collection, such as the number of interviews conducted, response rate among respondents who have been 

contacted at least once, the number of dropouts, and the average interview time. The average interview 

time is often estimated during testing, but because it may vary from the actual interview time, it is 

beneficial to check the average interview time early in the data collection process. Since interviewers 

inform respondents about the estimated duration of the interview when asking them to participate in the 

survey, it is important that the estimated interview time is close to the actual interview time. 

We used paradata in the Living Conditions Survey 2023 to assess nonresponse bias during the data 

collection period, which helped us initiate measures to try to reduce that bias. When comparing the 

distribution in the gross sample with the distribution in the net sample, we can say something about 

nonresponse bias. By using paradata, combined with grouped sample data for gender, age, and education 

level, we made a visualization showing nonresponse bias for these characteristics. People aged 25 to 44 
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and people with lower education levels were underrepresented in the net sample. We therefore decided to 

offer incentives for people from these two groups to increase response rates. Without paradata combined 

with grouped sample data being updated on the web page daily, we would not have been able to monitor 

the nonresponse bias continually and initiate the exact measures we did, in addition to measuring the 

effect in retrospect. 

In the same survey, we decided to reduce the maximum number of possible calls to respondents because 

we saw from paradata that the last calls yielded very few interviews compared with the large share of 

nonresponses. Paradata enabled us to demonstrate the result of each call in an accessible manner, and we 

could adjust the daybatch settings accordingly. Explicitly, we reduced the maximum number of calls from 

15 to 12 in the Blaise CATI dashboard as the 13th, 14th and 15th call proved to be unfruitful in yielding 

interviews. This insight was particularly important, as we had limited interviewer resources that 

demanded efficient time allocation. 

4.2 Survey Project Managers—Evaluating Survey Questionnaires 

We have also used paradata to understand the flow of the Travel and Shopping Survey. Norwegians’ 

travel and shopping habits abroad were previously included as a minor part of a larger questionnaire 

conducted through telephone interviews. Later, the survey transitioned to a dedicated web-based platform, 

resulting in significant restructuring and rephrasing of questions. In connection with this, we used the 

paradata foundation to test a hypothesis about underreporting. 

The mode shift and restructuring of questions led to the hypothesis of underreporting for the number of 

trips taken abroad, as the survey’s burden on respondents increases in line with the number of trips. 

Respondents are first asked how many trips abroad they have taken in the last month, and then they are 

asked follow-up questions for each trip. The questions are often identical and repeated for each trip. 

Response burden is often associated with long completion time, poorly formulated questions, and nearly 

identical repetitive questions (Sharp & Frankel, 1983). Considering this, it is conceivable that respondents 

may understand the logic of the Blaise questionnaire and reduce the reported number of trips to avoid 

survey burden and the number of repetitive questions. 

In summary, we utilized paradata to test the hypothesis of underreporting by examining respondents’ 

navigation and user journey through the questionnaire. After unpacking, rows were grouped by 

respondents and timestamp and were ranked in chronological order. By doing so, it became possible to 

track the user journey of respondents during questionnaire completion. However, due to the volume of 

information, it was crucial to find a visualization method that would present the user journey of all 

respondents in a straightforward manner. 

Considering the hypothesis, we used a Sankey diagram, as it provides a clear visual representation of the 

transition between survey questions, revealing bottlenecks where the respondent either drops off, stalls, or 

goes back to a previous question. Lastly, if the user journey has multiple paths or options, the Sankey 

diagram can demonstrate how these paths diverge and converge. 

Figure 3 shows a visualization of all recorded user journeys through the survey. As seen in the figure, 

many respondents move from the introduction to the transport questions, but upon closer examination of 

the diagram, it is evident that the introduction repeats later in the journey. This provided us with an 

indication that respondents navigate backward in the questionnaire. After closer inspection, we observed 

that respondents with more trips often adjusted the reported number of trips to avoid repetitive questions 

about each trip. This led to adjustments in survey questions and the introduction of a cap on the number of 

trips the respondent must report. 
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Figure 3. Survey Flow in the Travel and Shopping Survey—Sankey Diagram 

 

 

Paradata proves to be well suited for analyses aimed at gaining insight into the user journey or flow of 

respondents in a questionnaire. Often, such an analysis can serve as an initial exploration to identify 

potential weaknesses in the questionnaire. Furthermore, such visualization provides a focus on where to 

allocate time and effort for both further analysis of reported data and coding of the Blaise questionnaire 

itself. 

4.3 Survey Methodologists—Recruitment and Questionnaire Monitoring 

To design new questionnaires or improve existing questionnaires, it is important for survey 

methodologists to assess how well the questions and questionnaire flow work for respondents to assure 

high data quality. Various qualitative methods, such as expert reviews, explorative and cognitive testing, 

and focus groups, are used to assess problems with the questions and improve them. Problems with the 

questions might lead to a large respondent burden, for example, due to sensitive questions, confusing 

question formulations, or no suitable answer options, which can lead to inadequate data quality. 

Quantitative data, such as paradata, can help to determine if problems detected in qualitative testing 

persist in the data collection. Similarly, paradata, combined with sample data, can give useful insights into 

whether a problem occurs for a specific group in the population. 

Paradata have been available in Statistics Norway for a while, but with higher accessibility through the 

pipeline, survey methodologists can more easily use paradata. Paradata can be used for pilot surveys and 

user testing during the data collection process and after the data collection process is completed. 

Especially for pilot surveys, the use of paradata during the data collection process can be handy for 

recruiting specific people to focus groups. For instance, we can recruit those who took a long time to 

answer the survey, those who are registered with several sessions, or those who received several error 

messages when answering the questionnaire. 

For evaluating the quality of questions or questionnaire flow of a survey, various paradata indicators can 

be used. It is important to keep in mind that analyzing paradata is time-consuming, and it is therefore 

advisable to map out the questions we want to analyze using paradata and choose which paradata 

indicators should be used for the analysis. For instance, indicators we often use to assess respondent 

burden and data quality are: 

• Error messages 

• Response time 

• Previous page 
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Error messages can help the respondent avoid obvious mistakes or unanswered questions. Yet, it can be 

problematic if the error message is not comprehensible to the respondent or if the respondent receives 

many error messages while answering the survey. If many respondents receive error messages, this can 

lead to dropout or irritation and might affect the responses for the remaining questions. It may also be an 

indication of a poorly formulated question. 

Analyzing response time has been studied extensively and a review of existing literature has been done by 

Vehovar and Čehovin (2023). A very short response time can indicate that a respondent does not read the 

question formulation thoroughly or not at all. On the other hand, a very short completion time could also 

mean that the respondent is just a particularly quick reader. A very long response time might indicate that 

the question is difficult to understand or answer. What determines if a response time is too long or too 

short depends on the type of question. Hence, researchers have to consider the question at hand to 

determine if a response time is too short or too long. 

If many respondents revisit the previous page, it might indicate that there is a problem with the 

questionnaire flow, for instance, if there is a follow-up question on a new page but respondents require 

repetition of important information and must revisit the previous page. It might also indicate that the 

respondents perceive questions as too similar and therefore go backward in the questionnaire to find the 

difference between the questions. 

In sum, paradata can help us to assess data quality and reduce response burden. Although paradata cannot 

replace qualitative work such as user testing, paradata serve as an additional help for survey 

methodologists to improve survey questionnaires. 

5. Summary 

In this article, we have outlined the process of exporting, cleaning, storing, and sharing paradata in our 

pipeline. The primary objectives for the team responsible for utilizing paradata was to continually provide 

stakeholders with up-to-date reports of the data collection and to make paradata more easily accessible for 

colleagues. We achieved these objectives by building this data pipeline. Within the pipeline, we have 

focused on code modularization and building program reports that can be run on several surveys. In 

addition to using program reports, colleagues can conduct their own analyses and develop program 

reports tailored to their specific needs. Our data collection department is composed of colleagues with 

varying levels of programming proficiency, and everyone has a critical role in data collection procedures. 

To ensure that everyone has the opportunity to view the outcomes of data collection and participate in 

enhancing its efficiency, irrespective of their programming proficiency, we share an overview of the data 

collection process on an internal web page. The examples of how our survey project managers and survey 

methodologists use paradata highlight the foundational role of our pipeline in shaping a range of crucial 

decisions. The pipeline facilities effective use of paradata to inform decisions about data collection 

processes and survey questionnaire development, thereby enhancing several aspects of the data collection.   

6. The Way Forward 

Since our pipeline project is in its early stages, we wish to improve certain aspects. Firstly, we wish to 

include more reports on our web page and build more supporting modules and programs for ad hoc 

analyses. To understand the needs of our colleagues and update them on our progress, we have regular 

sprint reviews where we show program reports we have developed and new additions to the webpage. 

These sprint reviews are opportunities for colleagues to suggest improvements and solutions that can help 

support them in their roles. Secondly, the steps in our pipeline are mostly automated, except for updating 

the web page. Thus, one of our priorities is to develop a solution that will automatically update our web 

page. Furthermore, we wish to create a dashboard that will give the user more flexibility with 

interactivity. 



12 

Our pipeline is a work in progress, and we expect to update and improve aspects of the pipeline as we 

discover bugs or find improvements. Thus, we suggest that interested readers contact us to see the 

updated versions of the code shown in this article.  

7. References 

Cheung, G., Piskorowski, A., Wood, L., & Peng, H. (2016). Using survey paradata. 17th International 

Blaise Users Group Conference, The Hague, Amsterdam, the Netherlands. 

Hunt, J. (2016). Using Audit Trail data to move from a black box to a transparent data collection process. 

17th International Blaise Users Group Conference, The Hague, Amsterdam, the Netherlands. 

Kreuter, F., Couper, M., & Lyberg, L. (2010). The use of paradata to monitor and manage survey data 

collection. American Statistical Association,  Proceedings of the oint statistical meetings, (pp. 282–296). 

Alexandria, VA, United States. 

Schouten, B., Peytchev, A., & Wagner, J. (2017). Adaptive survey design (1st ed.). Chapman and 

Hall/CRC.  

Sharp, L. M., & Frankel, J. (1983). Respondent burden: A test of some common assumptions. Public 

Opinion Quarterly, 47(1), 36–53. 

Vehovar, V., & Čehovin, G. (2023). Direct paradata usage for analysis of response quality, respondent 

characteristics, and survey estimates: State-of-the-art review and typology of paradata (Working Paper). 

Center for Social Informatics, University of Ljubljana. https://www.fdv.uni-lj.si/docs/default-source/cdi-

doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20 

 

  

https://www.fdv.uni-lj.si/docs/default-source/cdi-doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20
https://www.fdv.uni-lj.si/docs/default-source/cdi-doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20


13 

8. Appendix 

Code 1. Exporting Audit Trail Data from Blaise 
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Code 2. Exporting and Preparing Dial History Data from Blaise 
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Code 3. Parsing Paradata and Storing the Structured Paradata in a Parquet File 

 

 
Code 4. Manipulating Paradata for Analysis 
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Code 5. Module to Query Data from the Production Bucket 

 
 

def file_concat(InstrumentId, dager=None, start_dato=None, slutt_dato=None): 
    # Importerer nødvendige pakker 
    import dapla 
    import sys 
    from dapla import FileClient 
    import pandas as pd 
    import os 
    import pyarrow.parquet as pq 
    import warnings 
    warnings.filterwarnings('ignore') 
    # Får tilgang til bøtte strukturen 
    fs = FileClient.get_gcs_file_system() 
    alle_filer_i_bøtta = fs.glob('gs://ssb-prod-datafangst-person-data-produkt/Inndata/ringedata'+ 

"/*.parquet") 
    # LAger tester foir ulike parametre 
    alle_dager = ((dager is None) &(start_dato is None) &(slutt_dato is None)) 
    antall_dager = ((dager is not None)&(start_dato is None)&(slutt_dato is None)) 
    fra_dato = ((dager is None)&(start_dato is not None)&(slutt_dato is None)) 
    til_dato = ((dager is None)&(start_dato is None)&(slutt_dato is not None)) 
    intervall = ((dager is None)&(start_dato is not None)&(slutt_dato is not None)) 
    alle_filer_i_bøtta = FileClient().ls('ssb-prod-datafangst-person-data-produkt/Inndata/ringedata') 
    # Sjekker indexen for ønsket datoer i alle filers liste 
    start = '' 
    if start_dato is not None: 
        for index, element in enumerate(alle_filer_i_bøtta): 
            if start_dato in element: 
                start = index 
        if start == '': 
            sys.exit(0) 
 

    elif start_dato is None: 
        pass 
    else: 
        raise UnboundLocalError(f'{start_dato} finnes ikke i bøtta') 
    slutt = '' 
    if slutt_dato is not None: 
        for index, element in enumerate(alle_filer_i_bøtta): 
            if slutt_dato in element: 
                slutt = index       
        if slutt == '': 
            sys.exit(0) 
    elif slutt_dato is None: 
        pass 
    else: 
        raise UnboundLocalError('Denne datoene finnes ikke i bøtta') 
 

     #Velger filer i som ønsket antall dager 
    if alle_dager: 
        files = alle_filer_i_bøtta[1:] 
    elif antall_dager: 
        files = alle_filer_i_bøtta[-dager:] 
    elif fra_dato and start != '': 
        files = alle_filer_i_bøtta[start:] 
    elif til_dato: 
        files = alle_filer_i_bøtta[1:slutt+1] 
    elif intervall and start!='': 
        files = alle_filer_i_bøtta[start:slutt+1] 
    # Lager en beholder for ønskede fielr 
    out = [] 
    # Looper gjennom alle ønskede filer 
    for file in files: 
        file = 'gs://' + file 
        out.append(file) 
    table_df = pq.ParquetDataset(out, filesystem=fs, filters=[("InstrumentId", "==", 

InstrumentId)]).read().to_pandas() 
    return table_df 


