
1

How Creating a Pipeline for Automatically Analyzing and Sharing
Paradata Facilitated the Ability to Make Data-Driven Adjustments
to Improve Data Collections

Elise Alstad, Erdal Kilicdogan, Sara Grimstad, Katharina Rossbach, Gezim Seferi, Marta Krawczynska,

Statistics Norway

1. Abstract

Paradata has proven key to managing dynamic data collections, as we can use the paradata to identify and

measure nonresponse and measurement errors. However, paradata contains large amounts of unstructured

data, and it can be resource-intensive to extract and structure the data. We therefore found that we needed

a robust and efficient process for extracting, cleaning, storing, and analyzing paradata. Using Python with

Google Cloud Storage services, we created a data pipeline that synchronizes paradata from Blaise daily,

parses it, and stores it in the cloud. By having up-to-date paradata, we can gain insightful information

about the data collection process as it progresses. For instance, using Audit Trail data with sample data,

we assess nonresponse bias for different demographic groups. Likewise, by using Dial History data, we

analyze the outcome of each call and initiate measures based on their effectiveness. To make information

about the data collection available to all stakeholders, irrespective of coding experience, results from the

paradata analysis are shared to an internal web page that is updated daily. By creating an automatic

pipeline that allows colleagues to evaluate the data collection process, we have made it easier to make

data-driven decisions that adjust for bias and measurement errors. Because we use Python, which is an

open-source programming language, aspects of our pipeline can be implemented by others without any

cost. Similarly, we hope that sharing the journey of how we created the pipeline and the benefits we saw

from it can be useful for other Blaise users.

2. Introduction

Data collection demands significant resources in terms of both cost and time, and it is therefore important

to understand how to improve data collection processes. Paradata can be used to understand respondent

behavior and enhance survey questionnaires to gain higher survey quality, as well as to monitor and

identify areas for improvement to effectively manage data collections dynamically (Kreuter, Couper, &

Lyberg, 2010). At Statistics Norway, we have used paradata from Dial History and Audit Trail, and we

will refer to these data sources when we use the term paradata. These data sources include all call records,

actions that the interviewer and respondents perform in the survey, and the timestamps for these actions.

Post-survey analyses of paradata will help us understand how to improve the data collection process for

next time. But by using real-time, or nearly real-time, paradata, we can help stakeholders to make changes

during data collection in ongoing surveys (Schouten, Peytchev, & Wagner, 2017). While there are

numerous uses of paradata (see Hunt, 2016; Cheung et al., 2016; Kreuter, Couper, & Lyberg, 2010) at

Statistics Norway, we have focused on developing the use of paradata in two main areas:

• Improving survey questionnaires by understanding respondent behavior in surveys.

• Dynamic management of surveys by monitoring and adjusting for nonresponse bias.

When we started using paradata, the initial step was to export paradata from Blaise, and here we noticed

challenges concerning the sheer volume of data and database access. Querying Audit Trail data from large

surveys demanded a substantial share of the server capacity, resulting in slower loading time for

interviewers. Secondly, we faced challenges related to database access because colleagues outside of the

Blaise developer team required access to the paradata. However, as the database with the schemas for

Audit Trail also included other schemas, it was unideal that too many individuals would be given access

2

to the database. Subsequently, only a limited number of colleagues were given access and could export

Audit Trail and Dial History data. Moreover, the individuals who could export paradata had to be cautious

about the amount of data they exported while also aiming to export the data during periods when few

interviewers were active to avoid slow loading speed for interviewers. Thus, we realized that we needed

to develop an alternative solution that would facilitate easier access to paradata.

The team tasked with utilizing paradata had several objectives, one of which was to provide colleagues in

the department with an up-to-date overview of the data collection. We started by developing Python

programs that would generate data collection reports using call history data from Dial History. However,

the program reports were not widely used, mainly due to some colleagues perceiving Python as a barrier

due to their unfamiliarity with the programming language. Additionally, considering the sensitivity of

paradata, we wished to provide stakeholders with reports without giving them access to the data itself,

which was required to run the program reports. To achieve this, we recognized the need to create a way to

share reports without requiring users to run the program or access the data. Thus, we set out to create a

web page with aggregated results over the data collection.

Furthermore, as some colleagues wished to analyze the data themselves, we saw that starting from scratch

with each analysis would be inefficient. We therefore developed small Python program modules that

could assist users with analyzing the paradata. To ensure accessibility and to encourage more reuse of

code, all team members work within one GitHub repository. By developing programs that should work on

all instruments and require little coding expertise to run, we have created a versatile solution that can

accommodate the needs of colleagues who are involved in different parts of the data collection process.

By establishing this pipeline, project managers would receive better support in dynamically managing

data collection, and survey methodologists and Blaise developers could more easily access and analyze

paradata, facilitating data-driven decisions to improve surveys.

One of Statistics Norway’s digitalization strategies includes implementing Cloud Services and making the

shift toward using open-source programming languages. Thus, when creating this pipeline, we decided to

use Google Cloud Services and develop the programs in Python. However, aspects of this pipeline can be

implemented without the use of Cloud Services. The first part of the article illustrates an overview of the

pipeline structure. Next, we share some experiences of how paradata has been used by project managers

and survey methodologists to dynamically manage data collection and to improve survey questionnaires.

Finally, we summarize the positive effects we have seen from implementing the pipeline and discuss our

plans for enhancing the pipeline.

3. Paradata Pipeline

In this section, we will explain how the pipeline is set up. The program code we have used for the pipeline

is included in the Appendix. The initial step of the pipeline involves exporting data from our on-premises

Blaise server. Next, data is exported to a storage system in the Google Cloud Platform (GCP). Then, the

following steps of the pipeline are completed using solutions from Statistics Norway’s new cloud-based

data platform (DAPLA). In short, the bullet points below and Figure 1 summarize the steps of our

pipeline:

• Exporting data from Blaise to GCP

• Transferring data from the source bucket to the production bucket in GCP

• Developing reports and programs in JupyterLab

• Sharing daily results to the internal web page

Dial History data is parsed in Step 1, and Audit Trail data is parsed in Step 2.

3

Figure 1. Pipeline from Blaise to GCP

Before explaining the steps in the pipeline, we will first outline the storage structure we use in GCP.

3.1 Using the Google Cloud Platform Structure

In the GCP, a “bucket” is a unit for containing data that serves the same purpose as a folder. All data in

Google Cloud must be stored and organized within these buckets. Essentially, a bucket functions as a

structured folder, facilitating the organization and management of different data files. Moreover, we have

two buckets for different data structures: unmanipulated and manipulated data. By using different buckets

for unmanipulated and manipulated data, we can keep backups of the unmanipulated data where only a

few individuals have access. Since the unmanipulated data are the basis for all our analysis and

manipulation, having this data in a separate bucket ensures that we have a reliable reference point.

3.1.1 Source Bucket

The source bucket contains unmanipulated paradata from Blaise and select categorical sample data

variables, such as age group, region, education level, and gender. Only two people have permission to

read, write, or delete files in this bucket.

3.1.2 Production Bucket

In the production bucket, we store manipulated data from the source bucket and data with the select

sample variables. Only colleagues who need to use these data are given access to read, write, or delete

data in this bucket.

4

3.2 Exporting Data from Blaise to Google Cloud Platform

The paradata files are exported from the Blaise databases and then stored as CSV files on an on-premises

server. To export the paradata from Blaise, we use Code 1 (see the Appendix) for Audit Trail data and

Code 2 (see the Appendix) for Dial History. We use Crontab to automatically schedule the export of the

paradata each night. We then use GCP’s tool “transfer job” to automatically transfer the data from our on-

premises server to the source bucket in GCP. Once this step of the pipeline is completed, Audit Trail data

and Dial History data are stored as CSV files in the source bucket.

3.3 Transferring Data from the Source Bucket to the Production Bucket in GCP

The next step in the pipeline is to transfer data in GCP from the source bucket and store it as Parquet files

in the production bucket. We have utilized a solution created by Statistics Norway’s data platform team

that uses Cloud Run in GCP to automate this step. The solution allows a team to write a script that is

triggered when a new file is added to the source bucket. For the Audit Trail data, we have developed a

script (see Code 3 in the Appendix) that reads the data from the source bucket, parses the data, and then

stores the parsed data in the production bucket. Similarly, for Dial History data, we have developed a

script that reads the CSV file from the source bucket and stores it as a Parquet file in the production

bucket.

3.3.1 Parsing Audit Trail Data

As the Audit Trail data from Blaise is inadequate for effective analysis, we have parsed the paradata to a

structure more suitable for analysis using a script we refer to as the paradata parser (see Code 3 in the

Appendix). In the unmanipulated Audit Trail–level data, shown in Table 1, we can see that the “Content”

column contains information about the action. The content of the “Content” column is structured as

XML-formatted data.

To extract and structure the information in the “Content” column, we use the Python XML package

xml.etree.ElementTree. The paradata parser script processes the XML content in the “Content” column of

the input dataframe, extracting attributes and tags, and creates a new dataframe with the columns “event”,

“KeyValue”, “TimeStamp”, “SessionId”, and “InstrumentId”, in addition to columns from the attributes

as shown in Tables 2 and 3. The parser iterates through each row, creating a new column for each new

attribute and adding the attribute’s value to the corresponding row. Each tag represents an event type and

is included in the “event” column. The paradata parser organizes the data into the structure shown in

5

Tables 2 and 3. To enhance readability, the data is split into two separate tables. Also, the column “OS”

would contain more information, but for viewing purposes, the text has been shortened.

Table 1. Audit Trail Data from Blaise

Tables 2 and 3. Parsed Audit Trail Data

An advantage of the paradata parser, in contrast to programs that are dependent on regular expressions or

fixed string/column position to extract information from the “Content” column, is that the paradata parser

automatically creates new columns as it iterates over the data and encounters new attributes. This

flexibility ensures that the program can process data with different Audit Trail–level settings. The

paradata parser program has worked with data that has “Page”, “Field”, and “Keyboard” as the Audit

Trail–level setting. By utilizing the paradata parser, the pipeline can process all our surveys, each

potentially having different Audit Trail–level configurations, thus ensuring flexibility.

Briefly summarized, each night, data is extracted from Blaise using Crontab and then stored in the GCP

source bucket. Subsequently, the paradata parser script (see Code 3 in the Appendix) and the solution

offered by Statistic Norway’s data platform team are employed to parse and transfer the data to the

production bucket. As a result, we have updated data that is ready to be analyzed each day.

6

3.4 Developing Reports and Programs in JupyterLab

We access and analyze the paradata in a JupyterLab environment within Statistics Norway’s cloud-based

data platform. JupyterLab’s interactive computing environment allows us to combine code, visualizations,

and explanatory text in a single Jupyter Notebook. The development of new program reports and our web

page is done in the JupyterLab environment in Statistics Norway’s cloud-based data platform.

As we focus on developing scripts that contain standardized code that work with all surveys, all team

members work within one GitHub repository and aim to develop analyses that can be run on various

surveys. Moreover, we use Poetry, a tool for package management in Python, to ensure that every team

member works with the same set of libraries. By using Statistics Norway’s JupyterLab environment and

using GitHub for version control, team members find it easy to collaborate on developing code.

When we initially started to analyze paradata, we often found ourselves repeatedly writing and running

code for the same or similar tasks when analyzing the data. Therefore, our team decided to focus on code

modularization. Code modularization involves creating modules, which are self-contained units of code

that promote reusability and organization. Thus, we aim to identify repeated tasks and write this into

modules. The infrastructure of our GitHub repository is set up to be flexible for the user, with modules

stored within one folder so they can be imported and used when the user is working in the Jupyter

Notebook. Thus, code does not need to be copied and pasted between users or Jupyter Notebooks. For

instance, two modules are frequently used when analyzing paradata: data query and paradata

manipulation.

As data from each day is stored as separate files in the production bucket, we have created a program (see

Code 5 in the Appendix) that queries all the data for a specific survey. The program allows colleagues to

query all the data for the specific survey anddata in between two dates, before a specific date, or after a

specific date.

Moreover, the data obtained from the paradata parser may sometimes be insufficient for direct analysis,

so we made a module (see Code 4 in the Appendix) to manipulate the paradata, creating a more suitable

structure for analysis. The module performs various operations, such as sorting observations by SessionId

and TimeStamp, filling values of PageIndex and FieldName, and creating a new column labeled

“diff_time” to calculate time frames between consecutive observations within each session. The Tables 3

and 4 show how the paradata looks after applying the module. For viewing purposes, the dataset is split

into two tables.

As we aim to continually enhance manipulation processes and conduct quality checks on our programs,

we wished to minimize manipulation of the paradata in Step 2 of our pipeline and to instead perform data

manipulation in the JupyterLab environment in Step 3. This approach ensures uniformity in the structure

of data within the production bucket while we continually develop our code for processing and analyzing

paradata.

3.5 Sharing Daily Results to Internal Web Page

We wished to make it easier for project managers and field staff to see an updated overview of the data

collection. Moreover, it was important that seeing daily results should not require any coding skills or

access to the actual data. Thus, we decided to create a web page where we could share reports with key

metrics for the data collection.

7

Tables 3 and 4. Manipulated Paradata

We developed the internal web page by using Quarto1 and host it with GitHub Pages.2 Quarto is an open-

source solution that combines markdown text and executable Python or R code. When rendering a Quarto

file, code is executed, and the output of the code and the markdown text is rendered to HTML files. The

collection of HTML files is combined into a complete web page that is hosted with GitHub Pages. As the

web page is static, we update it every day by rendering and publishing the complete GitHub repository

using Quarto’s render and publish commands. By using Quarto, we can utilize the Python reports we

create in Step 3 in the JupyterLab environment and then transfer the code to Quarto files for our web

page.

Figure 2 shows a screenshot of our web page with key metrics for ongoing surveys. Each survey

instrument is represented on the left, and the user can click on the page to view the instrument they wish

to see. The figure shows four different figures of CATI time use for the instrument. On the right, we can

see an index of the possible reports available for the instrument.

Quarto and GitHub Pages were chosen due to their ease of use, thereby reducing the need for IT support

during setup. Furthermore, GitHub Pages guarantees restricted access solely to authenticated employees

of Statistics Norway via their GitHub accounts. While we aim to build a more comprehensive solution in

the future, such as an interactive dashboard application, the current solution accomplishes our main

objective: sharing results and an overview of the data collection process to colleagues without the need

for coding or access to the data.

1 https://quarto.org/
2 https://docs.github.com/en/enterprise-cloud@latest/pages/getting-started-with-github-pages/about-github-pages

https://quarto.org/
https://docs.github.com/en/enterprise-cloud@latest/pages/getting-started-with-github-pages/about-github-pages

8

Figure 2. Screenshot of Our Internal Web Page

4. How The Pipeline Is Used

Creating the pipeline allows colleagues to see daily updates of the data collection. Additionally, because it

is easier to access structured paradata, colleagues can complete their own ad hoc analysis or use

predefined programs to run reports. The section below includes examples of how colleagues use paradata

to evaluate survey questionnaires and dynamically manage data collection.

4.1 Survey Project Managers—Dynamic Management of Surveys

An important responsibility for survey project managers is to continually monitor and manage data

collection, for example, by adapting to the amount of interviewer resources available. Having daily

updated paradata and sample information can be very beneficial for survey managers. As we have had

several survey project managers involved in the development of the pipeline, they have effectively started

analyzing paradata and developing reports for the web page.

We have used Dial History data to create key metrics that are used to monitor the data collection process.

Dial History data contains information about the most important indicators used to supervise the data

collection, such as the number of interviews conducted, response rate among respondents who have been

contacted at least once, the number of dropouts, and the average interview time. The average interview

time is often estimated during testing, but because it may vary from the actual interview time, it is

beneficial to check the average interview time early in the data collection process. Since interviewers

inform respondents about the estimated duration of the interview when asking them to participate in the

survey, it is important that the estimated interview time is close to the actual interview time.

We used paradata in the Living Conditions Survey 2023 to assess nonresponse bias during the data

collection period, which helped us initiate measures to try to reduce that bias. When comparing the

distribution in the gross sample with the distribution in the net sample, we can say something about

nonresponse bias. By using paradata, combined with grouped sample data for gender, age, and education

level, we made a visualization showing nonresponse bias for these characteristics. People aged 25 to 44

9

and people with lower education levels were underrepresented in the net sample. We therefore decided to

offer incentives for people from these two groups to increase response rates. Without paradata combined

with grouped sample data being updated on the web page daily, we would not have been able to monitor

the nonresponse bias continually and initiate the exact measures we did, in addition to measuring the

effect in retrospect.

In the same survey, we decided to reduce the maximum number of possible calls to respondents because

we saw from paradata that the last calls yielded very few interviews compared with the large share of

nonresponses. Paradata enabled us to demonstrate the result of each call in an accessible manner, and we

could adjust the daybatch settings accordingly. Explicitly, we reduced the maximum number of calls from

15 to 12 in the Blaise CATI dashboard as the 13th, 14th and 15th call proved to be unfruitful in yielding

interviews. This insight was particularly important, as we had limited interviewer resources that

demanded efficient time allocation.

4.2 Survey Project Managers—Evaluating Survey Questionnaires

We have also used paradata to understand the flow of the Travel and Shopping Survey. Norwegians’

travel and shopping habits abroad were previously included as a minor part of a larger questionnaire

conducted through telephone interviews. Later, the survey transitioned to a dedicated web-based platform,

resulting in significant restructuring and rephrasing of questions. In connection with this, we used the

paradata foundation to test a hypothesis about underreporting.

The mode shift and restructuring of questions led to the hypothesis of underreporting for the number of

trips taken abroad, as the survey’s burden on respondents increases in line with the number of trips.

Respondents are first asked how many trips abroad they have taken in the last month, and then they are

asked follow-up questions for each trip. The questions are often identical and repeated for each trip.

Response burden is often associated with long completion time, poorly formulated questions, and nearly

identical repetitive questions (Sharp & Frankel, 1983). Considering this, it is conceivable that respondents

may understand the logic of the Blaise questionnaire and reduce the reported number of trips to avoid

survey burden and the number of repetitive questions.

In summary, we utilized paradata to test the hypothesis of underreporting by examining respondents’

navigation and user journey through the questionnaire. After unpacking, rows were grouped by

respondents and timestamp and were ranked in chronological order. By doing so, it became possible to

track the user journey of respondents during questionnaire completion. However, due to the volume of

information, it was crucial to find a visualization method that would present the user journey of all

respondents in a straightforward manner.

Considering the hypothesis, we used a Sankey diagram, as it provides a clear visual representation of the

transition between survey questions, revealing bottlenecks where the respondent either drops off, stalls, or

goes back to a previous question. Lastly, if the user journey has multiple paths or options, the Sankey

diagram can demonstrate how these paths diverge and converge.

Figure 3 shows a visualization of all recorded user journeys through the survey. As seen in the figure,

many respondents move from the introduction to the transport questions, but upon closer examination of

the diagram, it is evident that the introduction repeats later in the journey. This provided us with an

indication that respondents navigate backward in the questionnaire. After closer inspection, we observed

that respondents with more trips often adjusted the reported number of trips to avoid repetitive questions

about each trip. This led to adjustments in survey questions and the introduction of a cap on the number of

trips the respondent must report.

10

Figure 3. Survey Flow in the Travel and Shopping Survey—Sankey Diagram

Paradata proves to be well suited for analyses aimed at gaining insight into the user journey or flow of

respondents in a questionnaire. Often, such an analysis can serve as an initial exploration to identify

potential weaknesses in the questionnaire. Furthermore, such visualization provides a focus on where to

allocate time and effort for both further analysis of reported data and coding of the Blaise questionnaire

itself.

4.3 Survey Methodologists—Recruitment and Questionnaire Monitoring

To design new questionnaires or improve existing questionnaires, it is important for survey

methodologists to assess how well the questions and questionnaire flow work for respondents to assure

high data quality. Various qualitative methods, such as expert reviews, explorative and cognitive testing,

and focus groups, are used to assess problems with the questions and improve them. Problems with the

questions might lead to a large respondent burden, for example, due to sensitive questions, confusing

question formulations, or no suitable answer options, which can lead to inadequate data quality.

Quantitative data, such as paradata, can help to determine if problems detected in qualitative testing

persist in the data collection. Similarly, paradata, combined with sample data, can give useful insights into

whether a problem occurs for a specific group in the population.

Paradata have been available in Statistics Norway for a while, but with higher accessibility through the

pipeline, survey methodologists can more easily use paradata. Paradata can be used for pilot surveys and

user testing during the data collection process and after the data collection process is completed.

Especially for pilot surveys, the use of paradata during the data collection process can be handy for

recruiting specific people to focus groups. For instance, we can recruit those who took a long time to

answer the survey, those who are registered with several sessions, or those who received several error

messages when answering the questionnaire.

For evaluating the quality of questions or questionnaire flow of a survey, various paradata indicators can

be used. It is important to keep in mind that analyzing paradata is time-consuming, and it is therefore

advisable to map out the questions we want to analyze using paradata and choose which paradata

indicators should be used for the analysis. For instance, indicators we often use to assess respondent

burden and data quality are:

• Error messages

• Response time

• Previous page

11

Error messages can help the respondent avoid obvious mistakes or unanswered questions. Yet, it can be

problematic if the error message is not comprehensible to the respondent or if the respondent receives

many error messages while answering the survey. If many respondents receive error messages, this can

lead to dropout or irritation and might affect the responses for the remaining questions. It may also be an

indication of a poorly formulated question.

Analyzing response time has been studied extensively and a review of existing literature has been done by

Vehovar and Čehovin (2023). A very short response time can indicate that a respondent does not read the

question formulation thoroughly or not at all. On the other hand, a very short completion time could also

mean that the respondent is just a particularly quick reader. A very long response time might indicate that

the question is difficult to understand or answer. What determines if a response time is too long or too

short depends on the type of question. Hence, researchers have to consider the question at hand to

determine if a response time is too short or too long.

If many respondents revisit the previous page, it might indicate that there is a problem with the

questionnaire flow, for instance, if there is a follow-up question on a new page but respondents require

repetition of important information and must revisit the previous page. It might also indicate that the

respondents perceive questions as too similar and therefore go backward in the questionnaire to find the

difference between the questions.

In sum, paradata can help us to assess data quality and reduce response burden. Although paradata cannot

replace qualitative work such as user testing, paradata serve as an additional help for survey

methodologists to improve survey questionnaires.

5. Summary

In this article, we have outlined the process of exporting, cleaning, storing, and sharing paradata in our

pipeline. The primary objectives for the team responsible for utilizing paradata was to continually provide

stakeholders with up-to-date reports of the data collection and to make paradata more easily accessible for

colleagues. We achieved these objectives by building this data pipeline. Within the pipeline, we have

focused on code modularization and building program reports that can be run on several surveys. In

addition to using program reports, colleagues can conduct their own analyses and develop program

reports tailored to their specific needs. Our data collection department is composed of colleagues with

varying levels of programming proficiency, and everyone has a critical role in data collection procedures.

To ensure that everyone has the opportunity to view the outcomes of data collection and participate in

enhancing its efficiency, irrespective of their programming proficiency, we share an overview of the data

collection process on an internal web page. The examples of how our survey project managers and survey

methodologists use paradata highlight the foundational role of our pipeline in shaping a range of crucial

decisions. The pipeline facilities effective use of paradata to inform decisions about data collection

processes and survey questionnaire development, thereby enhancing several aspects of the data collection.

6. The Way Forward

Since our pipeline project is in its early stages, we wish to improve certain aspects. Firstly, we wish to

include more reports on our web page and build more supporting modules and programs for ad hoc

analyses. To understand the needs of our colleagues and update them on our progress, we have regular

sprint reviews where we show program reports we have developed and new additions to the webpage.

These sprint reviews are opportunities for colleagues to suggest improvements and solutions that can help

support them in their roles. Secondly, the steps in our pipeline are mostly automated, except for updating

the web page. Thus, one of our priorities is to develop a solution that will automatically update our web

page. Furthermore, we wish to create a dashboard that will give the user more flexibility with

interactivity.

12

Our pipeline is a work in progress, and we expect to update and improve aspects of the pipeline as we

discover bugs or find improvements. Thus, we suggest that interested readers contact us to see the

updated versions of the code shown in this article.

7. References

Cheung, G., Piskorowski, A., Wood, L., & Peng, H. (2016). Using survey paradata. 17th International

Blaise Users Group Conference, The Hague, Amsterdam, the Netherlands.

Hunt, J. (2016). Using Audit Trail data to move from a black box to a transparent data collection process.

17th International Blaise Users Group Conference, The Hague, Amsterdam, the Netherlands.

Kreuter, F., Couper, M., & Lyberg, L. (2010). The use of paradata to monitor and manage survey data

collection. American Statistical Association, Proceedings of the oint statistical meetings, (pp. 282–296).

Alexandria, VA, United States.

Schouten, B., Peytchev, A., & Wagner, J. (2017). Adaptive survey design (1st ed.). Chapman and

Hall/CRC.

Sharp, L. M., & Frankel, J. (1983). Respondent burden: A test of some common assumptions. Public

Opinion Quarterly, 47(1), 36–53.

Vehovar, V., & Čehovin, G. (2023). Direct paradata usage for analysis of response quality, respondent

characteristics, and survey estimates: State-of-the-art review and typology of paradata (Working Paper).

Center for Social Informatics, University of Ljubljana. https://www.fdv.uni-lj.si/docs/default-source/cdi-

doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20

https://www.fdv.uni-lj.si/docs/default-source/cdi-doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20
https://www.fdv.uni-lj.si/docs/default-source/cdi-doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20

13

8. Appendix

Code 1. Exporting Audit Trail Data from Blaise

14

Code 2. Exporting and Preparing Dial History Data from Blaise

15

Code 3. Parsing Paradata and Storing the Structured Paradata in a Parquet File

Code 4. Manipulating Paradata for Analysis

16

Code 5. Module to Query Data from the Production Bucket

def file_concat(InstrumentId, dager=None, start_dato=None, slutt_dato=None):
 # Importerer nødvendige pakker
 import dapla
 import sys
 from dapla import FileClient
 import pandas as pd
 import os
 import pyarrow.parquet as pq
 import warnings
 warnings.filterwarnings('ignore')
 # Får tilgang til bøtte strukturen
 fs = FileClient.get_gcs_file_system()
 alle_filer_i_bøtta = fs.glob('gs://ssb-prod-datafangst-person-data-produkt/Inndata/ringedata'+

"/*.parquet")
 # LAger tester foir ulike parametre
 alle_dager = ((dager is None) &(start_dato is None) &(slutt_dato is None))
 antall_dager = ((dager is not None)&(start_dato is None)&(slutt_dato is None))
 fra_dato = ((dager is None)&(start_dato is not None)&(slutt_dato is None))
 til_dato = ((dager is None)&(start_dato is None)&(slutt_dato is not None))
 intervall = ((dager is None)&(start_dato is not None)&(slutt_dato is not None))
 alle_filer_i_bøtta = FileClient().ls('ssb-prod-datafangst-person-data-produkt/Inndata/ringedata')
 # Sjekker indexen for ønsket datoer i alle filers liste
 start = ''
 if start_dato is not None:
 for index, element in enumerate(alle_filer_i_bøtta):
 if start_dato in element:
 start = index
 if start == '':
 sys.exit(0)

 elif start_dato is None:
 pass
 else:
 raise UnboundLocalError(f'{start_dato} finnes ikke i bøtta')
 slutt = ''
 if slutt_dato is not None:
 for index, element in enumerate(alle_filer_i_bøtta):
 if slutt_dato in element:
 slutt = index
 if slutt == '':
 sys.exit(0)
 elif slutt_dato is None:
 pass
 else:
 raise UnboundLocalError('Denne datoene finnes ikke i bøtta')

 #Velger filer i som ønsket antall dager
 if alle_dager:
 files = alle_filer_i_bøtta[1:]
 elif antall_dager:
 files = alle_filer_i_bøtta[-dager:]
 elif fra_dato and start != '':
 files = alle_filer_i_bøtta[start:]
 elif til_dato:
 files = alle_filer_i_bøtta[1:slutt+1]
 elif intervall and start!='':
 files = alle_filer_i_bøtta[start:slutt+1]
 # Lager en beholder for ønskede fielr
 out = []
 # Looper gjennom alle ønskede filer
 for file in files:
 file = 'gs://' + file
 out.append(file)
 table_df = pq.ParquetDataset(out, filesystem=fs, filters=[("InstrumentId", "==",

InstrumentId)]).read().to_pandas()
 return table_df

