

20th International
Blaise User
Conference

October 24-26, 2023

Conference
Proceedings

Preface
This document contains the papers presented at the 20th International Blaise Users Conference
(IBUC) hosted by RTI International on October 24 to 26, 2023, in Durham, North Carolina,
USA.

The Scientific Committee organized and planned the conference program, chaired by Gina-Qian
Cheung, Independent Blaise Consultant. The members of the committee were:

	 • Gina Cheung (The chair of the Blaise Users Group)
	 • Jane Shepherd (Westat, USA)
	 • Tim Carati (Blaise, Statistics Netherlands)
	 • Roger Linssen (Blaise, Statistics Netherlands)
	 • Ramasubramanian Suresh (RTI International, USA)

RTI and the committee worked together to create this proceedings book for the benefit of the
conference participants and others.

Table of Contents

Blaise 5 at Statistics Netherlands	 5
Maarten Pouwels, Jeroen Schröder, Statistics Netherlands

Survey Coordination in Blaise 5: A Case Study	 15
Kenneth Rosbach, United States Department of Agriculture – NASS

User Experience of the Blaise 5.12 Version Upgrade at Statistics Finland	 21
Petri Godenhjelm, Pyry Keinonen, Statistics Finland

Blaise 5 Journey: A Case Study of a CAWI/CATI Survey and the End-to-End
Processes and Systems Used	 27

Angela Belo, Alessio Fiacco, and Colin Miceli, National Centre for Social Research (NatCen)

What Was Experienced by a Skilled Blaise Programmer in Transitioning from
Blaise 4 to Blaise 5	 37

David Dybicki and Peter Sparks, Survey Research Center, Survey Research Operations,
University of Michigan

A Short History of Blaise Code Generation	 45
Leif Bochis Madsen, Statistics Denmark

Speedy Incentives from Blaise 5 Instruments	 54
Emily Caron, Jerry Copperthwaite, and Rhymney Weidner, RTI International

The Many Faces of F1 	 62
Siu Chong Wan and Sheba Ephraim, Westat

Creating a Respondent Self-Scheduling Interface Using Blaise 5	 74
Andrew D. Piskorowski, Peter Sparks, and Andrew L. Hupp, University of Michigan

Large Scale Lookups, from an End-User and a Programmer Perspective	 84
Peter Stegehuis and Naxin Zheng, Westat

Session Data Preservation and Migration—Problems and Solutions	 89
Jason Ostergren and Helena Stolyarova, University of Michigan Institute for
Social Research

Design Considerations for Web and CAPI Multimode Using Blaise 5	 109
Todd Flannery and David Simpson, Westat

Advanced Editing: Integrating Blaise with a Management System	 116
Peter Stegehuis and Seth Benson-Flannery, Westat

Using Paradata to Evaluate the Effect of Changes in the Small Screen
Layout	 122

Elise Alstad and Erdal Kilicdogan, Statistics Norway

Table Layouts for Editing	 136
Charles Less, United States Department of Agriculture – NASS

How Blaise 5 Improves Table Presentation	 146
G J Boris Allan and Stéphane Ridoré, Westat

Video Interviewing: An Overview	 159
Andrew Hupp, University of Michigan

Video Interviewing: An Optimal Solution for a National Behavioral
Health Survey	 164

Preethi Jayaram, Lilia Filippenko, Curry Spain, Matthew Check, Wendy Reed,
Christine Carr, Heidi Guyer, and R. Suresh

Video Interviewing at the University of Michigan	 175
Andrew Hupp, University of Michigan

Converting Social Survey Blaise 4 Questionnaires to Blaise 5:	
Creating a Blaise 5 Application and Modernizing the Labour Force Survey	 181

Andy Watson and Steve Maurice, Office for National Statistics, United Kingdom

An Electronic Life History Calendar in a Web Survey	 189
Joseph Nofziger, Lilia Filippenko, Emilia Peytcheva, RTI International

System To System Communication	 199
Ralph van Geenen, Statistics Netherlands

Replacing Manipula in Blaise 5 	 204
Siu Chong Wan and Ryan Webb, Westat

How Creating a Pipeline for Automatically Analyzing and Sharing
Paradata Facilitated the Ability to Make Data-Driven Adjustments to
Improve Data Collections	 216

Elise Alstad, Erdal Kilicdogan, Sara Grimstad, Katharina Rossbach, Gezim Seferi,
Marta Krawczynska, Statistics Norway

How Creating a Pipeline for Automatically Analyzing and Sharing
Paradata Facilitated the Ability to Make Data-Driven Adjustments to
Improve Data Collections	 228

Elise Alstad, Erdal Kilicdogan, Sara Grimstad, Katharina Rossbach, Gezim Seferi,
Marta Krawczynska, Statistics Norway

Integrating Blaise 5 and DDI Lifecycle 3.3	 244
Dan Smith, Jeremy Iverson, Colectica

Automation Testing Experience with Blaise	 249
Kay Brenner, Gayu Subramanian and Rittu Jittu, Westat

Experiences in Accessibility and 508-Compliance Testing at RTI	 254
Al-Nisa Berry, Emily Caron, Melissa Page, and Rhymney Weidner, RTI International

> back to Table of Contents

1

Blaise 5 at Statistics Netherlands

Maarten Pouwels, Jeroen Schröder, Statistics Netherlands

Table of Contents
1. Overview Data Collection with Blaise 5 ... 1

2. Team Setup and Roles .. 2

2.1 Survey Designer .. 2

2.2 Survey Builder .. 3

3. Resource File .. 3

4. Project Builder .. 6

5. Project Renamer, Project Cleaner, and Project Verifier ... 7

6. Design Converter .. 9

1. Overview Data Collection with Blaise 5
In 2014, Statistics Netherlands started a project (Phoenix) to renew the data collection process and
upgrade the data collection systems in place. Blaise 5 is a massive part of this upgrade. As of 2023, all
data collection is performed through the Phoenix system. In total, there are more than 130 surveys in
use at Statistics Netherlands. Half of these statistics are targeting people and half are targeting
businesses. Most of these surveys are repeated yearly, apart from some pilot surveys with no follow-
up and some surveys which are repeated monthly, quarterly, or over a number of years. Most of the
business surveys are based on Eurostat regulations and are therefore repeated yearly. One objective of
the Phoenix project was replacing all Blaise 4 surveys with Blaise 5 surveys. Blaise 4 is no longer
used for any surveys at Statistics Netherlands. This process went gradually. First, the CAWI surveys
with the lowest complexity were migrated. These were “CAWI-only” surveys with standard question
types. The surveys’ lower complexity and smaller size, and the fact that they only made use of the
CAWI mode, made them suitable candidates to start the migration process.

Starting in 2020, the master-detail surveys were migrated to Blaise 5. To replace the master-detail,
system parallels were used instead of the detail surveys. In 2021, a start was made on moving CATI
surveys into the Phoenix system. In 2022, the last surveys were implemented in the Phoenix system
using the CMA app for CAPI surveys.

> back to Table of Contents

2

Figure 1: Number of Surveys Released per Year

2. Team Setup and Roles
At Statistics Netherlands, there is a department for social statistics, a department for business
statistics, and a department for data collection. When a new survey is needed or an existing survey
needs to be updated, the statistical department contacts data collection and a project is started to get
the new survey up and running. A project team is formed with every member of the team having a
specific specialized task regarding the different parts of the survey, such as sampling, communication,
and building. The building of the survey is done by a survey designer and a survey builder.

2.1 Survey Designer
The survey designer, as the name suggests, is responsible for the design of the survey. The design
consists of 2 documents. The first is a Word document that clarifies what questions will be asked and
how they will be formulated. The formulation of the questions needs to be checked against several
things. First, does everyone understand the questions that will be asked? Some words are considered
too difficult for the general public, and other times, the formulation needs to be tactically accurate. It’s
possible the question has too many options. In this case, it might be easier to make it into 2 separate
questions. Also, the text should not be ambiguous to avoid misconceptions. The answer options
should be clear, and the respondent should not be forced into a statement they do not feel comfortable
with. All questions must have a unique variable name so the statistical department can correspond the
output to the questions asked.

The document is created in Word because it’s a widely used text processor and most people are
familiar with it. This allows the statistical department to also read the design document. Special
macros were built to make the design easier to implement. This also makes it easier for questions to
be standardized, which allows the builder to use tooling and convert the question automatically.

The second document contains the routing of the survey. This is created using Visio because it’s more
visual. This contains the routing for the survey and any checks that need to be implemented. When
there are technical questions, the survey designer is advised by the builder about what is possible and

0

500

1000

1500

2000

2500

3000

18-8-2016 31-12-2017 15-5-2019 26-9-2020 8-2-2022 23-6-2023

Q
ue

st
io

ns

Date

Surveys released

Business

People

> back to Table of Contents

3

what possible advantages and disadvantages there are. When the design is finished and approved, it is
sent to the survey builder to create the survey. When the development of the survey is completed, the
designer conducts the first test to see if everything has been implemented correctly. When this process
is concluded, the statistical department is also invited to test the survey.

2.2 Survey Builder
When a design has been checked and approved by the statistical department, it is sent to the builder.
Using Blaise 5, the builder creates the survey as specified in the design. This includes creating the
questions and implementing the routing and checks, but also testing and making sure everything is
built using the latest standard.

When making a survey, as well as making sure the survey works as described, we also make sure that
if a different builder must update the survey or make small adjustments, they can do so quickly and
easily. By standardizing the process of creating a survey as much as possible, most surveys are easily
managed and uniform. By using tooling created at Statistics Netherlands, a base project can be
automatically generated. This ensures that when building a survey, the base design is standardized and
can be used to build the rest of the survey. This also makes sure you have the latest version of all
standard parts of a survey, like the welcome page and the receipt page shown when the survey has
been filled in. We also have rules about code formatting to increase code readability. This includes
rules for code indentation and IF THEN ELSE statements, but also variable naming of auxiliary fields
and locals, etc.

3. Resource File
At Statistics Netherlands, 1 resource database is used for all surveys. Because different surveys have
different needs, lots of parameters are used to make sure surveys can be adjusted as needed without
altering the resource database. There is a difference in layout between the master pages for business
surveys and people surveys. These differences are all mapped to different variables in the resource
file, which can be selected as needed. Using the Project Builder, the builder can easily select the type
of survey to be built. This automatically adjusts the settings as needed, reducing the amount of
settings that have to be set manually, preventing mistakes.

The current resource database has 4 different resource sets. The default layout is the large CAWI
layout for laptops and computers. It’s set at a screen width of 1024 pixels, regardless of available
space. If the survey has an index, the width is 1280 pixels. If the screen is between 1024 and 1280
pixels, the index is not shown.

There is also a CAWI layout for smartphones. The smartphone layout contains all question types that
are available to the regular CAWI layout, but to accommodate the smaller screen group, templates are
displayed in a different manner. The questions are stacked on top of one another instead of beside
each other. This does mean that there are mode differences between the smartphone and large
resource set. Research is conducted to lessen the mode effects. For the option list template, different
variants were tried out to make sure differences between modes are as small as possible. Special care
is taken to make sure straight lining (filling in the questions all the same without reading the question)
is less common and that the variant people find most pleasant to use is implemented.

Currently, the smartphone resource set is mainly used for people surveys and not business surveys.
Work is underway to implement the smartphone layout for business surveys wherever possible.
Research is being done to determine what businesses primarily use smartphones for their day-to-day
activities, as opposed to using a computer, and whether surveys aimed at them are suitable for a
smartphone layout. The biggest problem is displaying tables on a smartphone. Small tables with only

> back to Table of Contents

4

1 column should be possible, but tables with many rows and columns are difficult to implement on
smartphones. Business surveys also tend to have a lot of text to provide additional information to
respondents. For instance, in a survey on employment, additional information might be given on what
is meant by employees and whether people hired through a temp agency also belong in this category.
These texts are shown with help buttons in the large CAWI layout, but those buttons don’t work on a
smartphone. New solutions have to be found for this problem and others like it.

A different resource set is used for the printed version. Previously, the printed version was primarily
used by the respondent to make a copy of their filled-out survey for their own documentation. Back
then, the printed version was a part of the CAWI mode. The current resource set has moved the print
to its own mode, which creates new possibilities for the printed version. An example of this would be
that it’s now possible to create a summary of the filled-out summary, as opposed to only being able to
print out the full survey.

Finally, there is a CATI/CAPI resource set. The main difference between this resource set and the
others is that in this resource set, more information on the respondent is available to the interviewer
on screen. It is also possible to fill out this survey with minimal use of the mouse so an interviewer
can fill out the survey quickly and accurately. One of the ways in which this is accomplished is by
including a field in which the interviewer can enter a number corresponding to an answer for
enumeration and set questions.

Currently, work is underway on redesigning the resource file. One of the goals of this new resource
file is to modernize the look and feel of the surveys and to make the smartphone the focus of the
design, rather than an afterthought. By making the smartphone the main focus of the design, problems
like the different look for option lists between the smartphone and computer layout can be minimized.
This, in turn, eliminates as many mode differences as possible. Research is underway to find the best
way to ask matrix questions as conveniently as possible while eliminating mode differences.

> back to Table of Contents

5

Figure 2: Matrix Question in Carousel

Figure 3: Matrix Question in Accordion Style

> back to Table of Contents

6

4. Project Builder
To ease the development of surveys at Statistics Netherlands, tools are used that are developed in
house. One of these tools is the Project Builder.

Figure 4: Project Builder

Because of the number of surveys created at Statistics Netherlands each year, the need arose for an
automated way of setting up projects to speed up the building process. This included both the way in
which teams were set up, but also the way in which surveys were built.

Before the creation of the Project Builder tool, most projects were set up using a step-by-step guide.
As this was quite time consuming, an investment was made to see what parts of the process could be
automated. As most projects use similar settings and make use of a number of standard blocks, the
Project Builder tool was created to take care of these steps.

The Project Builder presents the user with a number of options for the survey to be created. This
includes the project title and project code, what type of survey it will be, and what modes are to be
used. It gives the option to show an index for the survey and asks whether the survey makes use of a
master-detail type setup. It then gives the user the option to either make it single language or multi-
language. And lastly, the user can create test cases.

After these options have been selected, a number of blocks on the left side of the screen are
preselected based on those options. These can be edited depending on what’s needed for the survey to
be created.

By clicking “Create Project,” the project will be created based on all of these settings. The user can
then use this to further implement the survey-specific questions and settings.

> back to Table of Contents

7

5. Project Renamer, Project Cleaner, and Project Verifier
There are a number of other tools used at Statistics Netherlands to make the process of creating
surveys more streamlined. One of these tools is the Project Renamer.

Figure 5: Project Renamer

The Project Renamer gives the user the option to make a direct copy of a project with a different
project code. This is convenient for surveys that are done yearly with minor edits between versions. It
also allows for easy testing and bug fixing.

To use it, the user points the Project Renamer to the folder containing the original project and
provides the new project code. The Project Renamer searches the selected folder and all containing
folders for files having the old project code in its name. It also searches files to see if there are any
references to the old project code inside the file.

There is also a Project Cleaner, which is used when a project is finished. It cleans up the project
folder, removing all files which are not required to run the project. It also gives the option to create a
backup, which is saved to an archive.

> back to Table of Contents

8

Figure 6: Project Cleaner

Lastly, there is a Project Verifier. This tool is used when a survey is ready for testing. As a final
check, the user can run the Project Verifier to see if there are any settings which were missed before
testing. The Project Verifier will let the user know if there are any irregularities in the project.

The Project Verifier has a number of options that let it know what is required of the project. This
includes the Blaise version used, the type of project, the modes used, if it’s multi-language, and if
there is an index.

The Project Verifier uses these options to check the project. It returns a number of categories which
can either be red, orange, or green, as seen in the screenshot below. In general, red means there is an
error that needs to be resolved, orange is a warning, and green means all is well.

An example of a check that is performed is a debug check, which lets you know if there is any debug
commentary left in the project. It also lets you know if there are any standard blocks that are normally
added to a project of this type missing in the checked project.

> back to Table of Contents

9

Figure 7: Project Verifier

6. Design Converter
One of the most convenient tools is the Design Converter. The Design Converter allows the user to
automatically convert (parts of) a design to Blaise code.

Because the designs used at Statistics Netherlands have been standardized, it is possible to detect
different types of questions using this tool. The input side takes a question from the design. The
Design Converter interprets the question and converts it to the corresponding Blaise code. There are a
number of options to customize the output. This includes the number of tabs to be used when
formatting the output, and automatically copying the output so the user can directly paste it to the
Blaise project. It’s also possible to include the code for imputations.

Currently, this only works for single questions, but work is underway on a tool which will be able to
interpret full designs.

> back to Table of Contents

10

Figure 8: Design Converter

> back to Table of Contents

1

Survey Coordination in Blaise 5: A Case Study
Kenneth Rosbach, United States Department of Agriculture – NASS

1. Introduction
The National Agricultural Statistics Service (NASS) conducts two studies for agricultural producers
involved in the bee and honey industry. The first is an annual survey that collects data on honey
production, beehive inventory, and sales and economic data. After colony collapse disorder became an
issue in the US, NASS started conducting a Quarterly Colony Loss survey collecting data on hive
inventory, loss, and the reasons for loss.

The data collection efforts for these two studies overlap in January. The annual survey typically has a
sample of approximately 9,000 beekeepers, and the quarterly survey has a sample of approximately 3,500.
As many as 1,500 to 2,500 potential respondents are sampled for both surveys.

2. Background
To reduce the burden on respondents sampled for multiple surveys, NASS prefers to complete all surveys
for a respondent in a single contact. Historically, this required having a field enumerator collect data for
all surveys on paper. This process required a significant amount of time and money, and it prevented us
from being able to effectively use our call center enumerators, as they exclusively call surveys in CATI.
With Blaise 4, we could only call on one survey at a time, and switching from one survey to the other was
an arduous task. We then began to consider options to simplify this process for our call center
enumerators.

Efforts to coordinate this overlap have gone through a few iterations. First, we would call one survey in
Blaise 4, then collect the other survey on paper immediately after. Our second approach was to use a
Windows program to list respondents in such a way that matching respondents were listed together. See
Figure 1.

Figure 1. Original Interface for Matched Surveys

> back to Table of Contents

2

An enumerator would click on one line to launch the first survey in Blaise 4. Upon completion, they
would route back to the listing page, and they could click on the next line to launch the matched survey in
Blaise 4. Color coding was used to distinguish between records that had been completed and records
remaining eligible for contact. This created a fair amount of overhead between surveys, both in terms of
interview time and programming.

The first several questions of an interview contain several administrative items. We ask who we’re talking
to, verify contact information and business status, and complete other administrative items. While this
was the best option we knew about at the time, the interview flow in switching between surveys was a
concern.

3. Where We Are Now

3.1 Interview Flow

Blaise 5 offers us the ability to launch another Blaise survey using controls in the Blaise Resource
Database (blrd), or layout file. When we learned of this feature, we thought this would be a good option
for us to improve the flow of a telephone interview when conducting multiple surveys.

We added a button to our receipt page at the end of an interview. See Figure 2. If the respondent was
selected for both surveys, the button will be visible, and the enumerator will have the option to click into
the matched Bee and Honey survey or select the next form in the current survey. Selecting “Matched Bee
PDI” will start that interview at the dial screen.

Figure 2. Receipt Page with a Matched Survey

3.2 Nuts and Bolts—How We Make it Happen

To implement this button, we start in the Resource Editor and add the button. Our first consideration is
that we need to hide the button if there is not a match. To do this, we use Manipula prior to the survey to
code an indicator field in the database when a match across surveys is identified. Then in the blrd file, we
reference the value of that field in an expression for the visibility property of the button. See Figure 3.

> back to Table of Contents

3

Figure 3. Setting Visibility Condition

Now that we know the button will only appear when there is a match, the next task is to figure out how to
launch the new survey when the enumerator clicks the button. In Blaise 5, this is fairly simple. In the blrd,
we navigate to go to the events tab, go to the OnClick event, and select StartSurvey. See Figure 4.

Figure 4. Starting a Survey from Event Settings

> back to Table of Contents

4

Figure 5. Event Options

Once you have selected the StartSurvey action, several options will appear in the properties window. The
most straightforward is the instrument ID. You can use an explicit value or an expression. For now, we
use an explicit value and copy the GUID right into the blrd. See Figure 5. While this approach is easy to
set up, it lacks the versatility required for ready use in other coordination efforts.

Next, we want to make sure that the record we’re bringing up in the destination survey is the same person
as in this survey. NASS uses the same four field primary key in all our surveys, so we know the key value
of a record in this survey will be the same as the key value in the destination survey. So, we can click on
KeyValue. Then click the green plus to add ValuePropertiesObject. This gives us a properties window,
where we choose an expression. In the variables drop-down menu, we select KeyValue. In the option box
below, we select ValueAsText. Click the plus button to generate the expression. See Figure 6.

Figure 6. Setting the Key Value

> back to Table of Contents

5

Then we can use the RunTimeParameters field to set some parameters for the new form we’re launching.
Click the green plus to add a RuntimeParameterObject, then select what you need from the drop-down
menu. In our case, we define a layout set and several field values. We then use an expression to define
those values. See Figure 7.

Figure 7. Setting Runtime Parameters

In the end, we have a system that allows an enumerator collecting data on the Colony Loss Survey to
jump right into the annual Bee and Honey survey in cases where there is a match. While this is an
upgrade from what we had in Blaise 4, we’re still working on improvements.

4. Where We Want to Go
There are several features we are trying to figure out for future iterations of these surveys. One possibility
would be trying to build a component that will allow us to determine the GUID of the target survey at run
time. At NASS, we like to have all surveys share a blrd file so that we have a consistent flow between
surveys. This means all surveys have the same receipt page, which means that we can only coordinate one
way since we are hardcoding the GUID in the layout window. When we figure out how to calculate that at
run time, we’ll be able to coordinate both ways.

The next feature we’re considering is how to jump into the second survey where we want to. Currently,
the second survey opens to the dial menu, and the enumerator is forced to complete several
introductory/administrative questions, including verifying respondent names and contact information,
before getting into the main content of the study. Since the first survey has already asked those
administrative/introductory questions, ideally, we’d like to copy that data forward to the second survey
and open that instrument to the first survey-specific question. We think this can be done using session
data, but we haven’t yet figured out how to implement it.

We’ve also recently become aware that Blaise 5 offers a feature known as launcher and topic instruments.
When time permits, we will investigate this tool as an alternative option to handle toggling between
surveys.

> back to Table of Contents

6

Ultimately, what we hope to achieve is an experience where an enumerator can collect data for more than
one study, but to make it easy for the enumerators to have respondents feel like they are going through
only one survey. While we have demonstrated we can add some functionality in this direction in a
specific case, our goal is to make the process more generic so we can readily apply it to other
combinations of studies.

> back to Table of Contents

User Experience of the Blaise 5.12 Version Upgrade at
Statistics Finland

Petri Godenhjelm, Pyry Keinonen, Statistics Finland

This article discusses Statistics Finland’s transition to the Blaise 5.12 version. The transition had to
consider the requirements of Statistics Finland’s current production environment, the measures
resulting from upgrading the surveys and standard layout (resource database), and the timing of the
version updates of the survey installation packages. The timing of the update was perceived as a
challenge, especially updating the work environment of the interviewers during the specified short
period to avoid long interruptions in the interview work.

In addition, the resource database was reconfigured to work with the new rendering options, such as
CSS (Cascading Style Sheets) grids to ensure a good user experience for both respondents and
interviewers. In the update of the resource database, the key changes in relation to the standard
resource database of the new Blaise 5.12 version were compared, and the necessary updates to the
resource database of Statistics Finland were carried out.

In connection with the update, it was also researched whether to switch to using the Blaise DEP (Data
Entry Program) application in CAPI (Computer-Assisted Personal Interviewing) mode and to test the
Blaise 5 CATI (Computer-Assisted Telephone Interviewing) system. The goal was to ensure the
operation of the user interface and that the survey package generated without pages in the DEP
application. Regarding the CATI system, the transition from Blaise 4 to Blaise 5 was studied using a
test survey. Based on the results, Statistics Finland’s first Blaise 5 CATI production environment
concept was created.

1. Background

At Statistics Finland, Blaise 5 has been used since 2017 as the main household data collection tool.
The overall management of the mixed-mode data collection is implemented with the Ruuti system,
produced by Statistics Finland itself. Together, these systems form Statistics Finland’s main data
collection system for household surveys. In business surveys, the in-house production system XCola
is mainly used.

1.1 Ruuti System Characteristics

Ruuti is a tool for the daily operation of mixed-mode data collections. Ruuti understands data
collection; collection rounds and cycles; two possible collection modes (online answering and
interviewing), used together or separately; interviewers and their administration in relation to the
interview mode; case/target; persons; and the persons’ contact information, addresses, telephone
numbers, and emails.

Case and related persons can be taken to Ruuti not only before the start of the collection round/period,
but also during it. The characteristics of the case or target also include any prefilled information
intended for the survey. When cases and persons are already in Ruuti, their information can be
updated if needed.

Ruuti has features such as naming authors for collection periods, distributing items to authors,
recording contacts and comments during collection, and producing mass communication (letter/text
message/email) mailing lists.

> back to Table of Contents

Figure 1. Ruuti System Overview

Ruuti automatically deduces the case’s status based on what has been done to the case during the
collection period up to that point.

Ruuti distributes all generated information automatically within the system wherever information is
needed.

Ruuti can ask the survey installation package service for the survey installation package versions
available for each data collection. After the user has selected the installation package, Ruuti
distributes the Blaise installation package to the necessary places, uses Blaise to install the survey
ready for use, and commands Blaise to open the survey for answering. After the survey closes, Ruuti
receives the information generated in the response.

Ruuti talks with the Login Portal to enable web responders to access the survey.

Within the limits of user rights, Ruuti offers the survey data output via application programming
interface as it is, regardless of the content.

Ruuti is not responsible for the content and functionality of the forms, it is not a long-term storage
place for collected data or a tool for planning data collection, nor is it a tool for developing data
collection.

1.2 Blaise Version Upgrade Challenges

A part of the characteristics of Ruuti is that interviewers have their own case management application
called HaLo. HaLo provides case management tools for interviewers and handles the Blaise survey
package management. It also provides offline interview capability and handles the data from all the
installed surveys.

In addition to the HaLo installation, the interviewers currently have a Blaise server installation
installed on their workstations. This is because Blaise DEP has not been used in Statistics Finland,
and the surveys have been opened in interviewer mode (CAPI) with a local web browser. Such a
solution was decided on in 2017 because the user interface built for interviewers worked in the

> back to Table of Contents

browser without problems with the previous version of Blaise, while the dimensions of the page base
and some of the controls did not work in the user interface while opened using DEP.

Because of this choice, upgrading Blaise for the interviewers has required not only the HaLo
application update, but also a new Blaise installation, instead of just sending a new DEP solution in
the distribution. When installing a new Blaise version, it has been necessary to carefully consider
whether the new version is backward compatible with the installation packages built for the previous
version. As the production is running all the time, it is either necessary to schedule the updates to the
turning points of the key data collection rounds around the turn of the year, or to carry out the updates
during an unwanted production break.

Due to the heavy update process of introducing new Blaise versions into use in Statistics Finland, the
update interval is once or twice a year and mostly for bug fix upgrades, if possible. Also, new Blaise
versions cannot be put into production flexibly and with short notice. As a result, the introduction of
the new Blaise version involves long-term testing and waiting until the biggest bugs from the latest
released versions have already been ironed out and the operation is relatively reliable.

2. Blaise 5.12 Upgrade

In Statistics Finland, the current production version in use is Blaise 5.8. In the selection of the
production version, testing results have typically been used, and the opinion of Statistics Netherlands
(CBS) has been sought on the production suitability of the version. A couple of previous production
versions have been selected with these criteria. Major version upgrades are carried out at Statistics
Finland every couple of years. Smaller updates are pushed to production more often if necessary. In
this case, a “major version update” means an increase in the middle version number.

2.1 Testing Process, Briefly

Normally, a new Blaise version is initially tested with an in-house test survey, which contains all the
most common answer types and layout definitions used in Statistics Finland. In this test phase, we
will test that the survey works in both modes (CAWI and CAPI); that there are no problems with
generating the layout in browsers or DEP; and that all the controls used in user interface, custom
solutions, and different screen dimensions work within the layout. It is important to make sure that
general usability is good and accessibility functions are working as they should. Also, a few common
mobile devices are used in tests.

After a successful test in the first phase, the second phase consists of a few of our most complex
surveys being upgraded with the new Blaise version and tested for bugs, especially if some unique or
complex solutions have been used in a survey, such as household structure or custom features, which
are not found in our test survey.

In the third phase, we create a Ruuti system compatible survey installation package and test the survey
in the Ruuti test environment. Before this test is possible, we usually must upgrade Ruuti API libraries
with the new ones that come with the new Blaise version package. After these tests, the new Blaise
version is fit for production use in Statistics Finland.

2.2 Upgrading Resource Database

Before the testing process, it was assumed that a lot of work needs to be done with the resource
database. The biggest fear was that the new rendering options, such as CSS, could cause changes in

> back to Table of Contents

the customized resource database and even force some kind of massive refactoring, or that there
would be some other layout problems.

In this case, the biggest issues were with the CAPI mode layout. It is constructed in a way that the
interviewer may answer an enumeration type of question by choosing an alternative or addressing an
option number in the field. See Figure 2.

Figure 2. No Enumeration Buttons Visible While Using Browser without CSS Grids Options

This error was related to the new rendering options. Viewing the survey in a browser without using
the “Use CSS grids instead of size tree” option in the data entry settings caused the enumeration
buttons to vanish totally from the user interface. With these settings in DEP, everything worked as it
was supposed to. See Figure 3.

Figure 3. No CSS Grids in Use Did Not Affect DEP

When the CSS grids option was checked, you could see all the enumeration buttons as they should be
in the user interface when using a browser to view the survey.

> back to Table of Contents

In general, most of the fears did not come true, and the update of the resource database was successful
without major complications.

2.3 Testing DEP

After the successful resource database update, it was necessary to study how DEP would work with
our updated resource database and layout settings. It was decided in the spring that if DEP would
work, it would replace the current way of work to ease the installation burden and to help with
running multiple versions of Blaise installations on an interviewer’s workstation at the same time by
running surveys in ThickClient mode.

The testing itself was carried out by using one of our heaviest surveys, “Survey on Income and Living
Conditions.” In the test, it was necessary to successfully set up a standalone ThickClient survey and
run the survey package without generated pages. It was necessary to have evidence that there is no
risk the survey would not work in practice. It is not efficient to distribute installation packages with
static pages when their size could be gigabytes. In the Ruuti system, there are multiple survey
installation packages per survey per year assigned in use.

In the actual testing, the results were promising. There were no problems with running the survey, and
the quick conclusion was that it will be implemented into production in autumn 2023.

These changes will affect the Ruuti system and the HaLo application, also.

3. CATI

Blaise 4 is still used in two enterprise data collections in Statistics Finland. Also, both are conducted
in CATI mode, which we are not currently using in any other survey or in Ruuti data collections. A
part of the Blaise 5.12 update plan was to create a clear picture of the Blaise 5 CATI system and find
a solution for our old Blaise 4 CATI survey model. The problems with the Transport Layer Security
protocol 1.2 compatibility issue with Blaise 4 was considered one of the reasons to get rid of Blaise 4.
The first plan was to install and test Blaise’s own sample survey to get used to the phases of setting up
a simple CATI survey in Blaise 5.12. The selected sample was a traditional CATI survey called
“Health Survey.” The survey was selected because it is simple and reflects the need for use well.

In the installation phase, a provided installation readme-documentation was followed to the letter.
These steps included how to build and install the multipackage, create a daybatch, add some users,
and run the survey.

While running the survey as an interviewer role user, there was a notification message in the Blaise
survey window after login that stated, “Cannot select case because no valid daybatch file was found
for 12.7.2023.” Despite trying to redo all the steps, it was a dead end finding a solution without help.
So, this message escalated into a couple of months of communication with CBS. With their help, the
error was found in the end by studying Windows application logs and using a special installation
package that CBS provided for the troubleshooting.

After receiving a bug fix package from CBS for test usage, the CATI system could finally be tested as
it was meant to be originally.

> back to Table of Contents

4. Conclusions and Next Steps

During October and November, the Blaise 5.12 update will be performed. The update requires
upgrading active production surveys with the new Blaise version and packaging the Blaise
ThickClient solution for distribution to interviewers. In addition, the Ruuti system must be updated as
needed, so that the changed way of using the Blaise system does not cause problems in the operation
between the systems. In the first distribution package, active production survey installation packages
are also delivered to the interviewers. In the future, these installation packages will be distributed
normally via the Ruuti system distribution. The amount of distributed survey installation packages in
November is around 30 pieces.

At the time this paper was written, the next phase for CATI testing was to introduce and study the
new Blaise 5 CATI system with a representative from the interviewer work organizing role. This step
will provide specifications and create the conditions for the CATI Blaise 4 to Blaise 5 upgrade.

The next step concerning the CATI update is to create the first actual Blaise 5 CATI survey version
from one of our Blaise 4 business surveys during the early weeks of October. In this usage case is the
decision that the Blaise 5 CATI will be set up on its own dedicated server environment and
interviewers will use a browser to log in to the system. Hopefully, we will have our AD users
successfully synchronized to a server manager before going into production.

The experience of upgrading Blaise 5 versions to the next version has improved over the past six
years. In the past, the version updates always felt like a big effort from the whole organization, and it
seemed that there was always some troublesome bug in every Blaise version. Over the past few years,
the experience has greatly improved, and the incidence of compatibility issues has decreased. In
addition, the service desk model CBS has used for a few years now has been very customer friendly.
The overall experience of handling cases with CBS has grown better and faster.

In the original abstract, there was a mention of studying Blaise 5.12 paradata viewer and testing tools
as a part of this paper, but due to time constraints, these subjects are not included. If possible, these
subjects will be referred to in the actual presentation in IBUC 2023.

> back to Table of Contents

1

Blaise 5 Journey: A Case Study of a CAWI/CATI Survey and the
End-to-End Processes and Systems Used
Angela Belo, Alessio Fiacco, and Colin Miceli, National Centre for Social Research (NatCen)

We are on a journey to migrate to Blaise 5 for all our survey work. Now that we have completed a few
CAWI and CAWI/CATI surveys on this new platform, we would like to share our experiences: what we
have developed, what we have learned, and the challenges and opportunities along the way, as well as
what is yet to come. First, we would like to provide a brief overview and background, then delve into
various aspects of the case study based on our Technical Education survey, provide some details into the
redesign of a key supporting system for managing sample and other functionality, and wrap up with what
lies ahead and some of the challenges we anticipate.

1. Background and Overview
1.1 Why Blaise 5? What’s Important to NatCen
The National Centre for Social Research (NatCen) has been operating two software systems for its data
collection services for more than 10 years: Blaise 4.8 primarily for face-to-face interviewing and Unicom
Intelligence/IBM Dimensions (UI) primarily for telephone and web surveys. It was recognized that their
functionality is limited and soon they will both become unsupported.

NatCen’s vision for 2025 includes web and mobile first, and multimode data collection services. More
and more, it is crucial to have the flexibility needed to expand the services NatCen can offer, and to be
ready for any substantive shift from face-to-face to other modes and multimode data collection.

Having a fully functional, future-proofed, multimode data collection survey platform running on up-to-
date server architecture with a reduced reliance on legacy solutions and limited programming resources is
critical to the business plan.

A full market scoping exercise was commissioned in 2019, and external consultants were appointed to
assist with the selection of future-proofed software systems that can provide a lean and efficient operating
model for multimode data collection. Blaise 5 emerged as the most suitable solution.

The Blaise 5 project was initiated in June 2020 to transform NatCen’s survey platform and related
procedures, as well as upgrade or replace associated legacy support systems. This will ensure NatCen is
able to provide state of the art multimode solutions for data collection and remain competitive in its
offering.

1.2 Overview of Our Business
NatCen is a registered charity and is the largest independent and not-for-profit social research
organization in the UK, with an excellent track record in surveys and policy research.

We work with many different clients, including various government departments, academic institutions,
and others, responding to tenders to gain project work. As a result, there is a wide variety of survey
projects that we run, catering to different client requirements.

1.3 Overview of Our Technical Environments
Before any work could begin, we needed to set up our server environments.

> back to Table of Contents

2

The technical server infrastructure is comprised of the following servers, for production:

• 3 web servers, with a load balancer to distribute the load across them
• 2 Blaise application servers
• 1 database server
• 1 session server

We have the following environments for various purposes, with a similar configuration but geared to less
capacity than production.

1.3.1 Development/Demo Environment
We have one environment dedicated to development and unit testing activities. We also use it to
experiment with new ideas and proof of concept for various survey designs, as well as to test new Blaise
releases before applying them more broadly to all other environments.

1.3.2 Pre-Prod Environment
We use this environment for testing new releases of the Survey Control System (SCS), along with Blaise
5. If new Blaise 5 software releases are needed for certain SCS features, then the upgraded versions are
applied here.

1.3.3 UAT/Staging Environment
This environment is a mirror image of the Production environment, running the same software versions of
Blaise 5 and the SCS systems. We use this environment for working on live projects during the
development and testing of surveys prior to launch.

1.3.4 Production Environment
This environment is for running live surveys and collecting data from respondents/interviewers in all
modes.

1.4 Templates Redesign
In the early stages of the project, we created some Blaise 5 question templates for our web and CATI
projects. We discovered quickly that learning and working with the resource database has a reasonably
steep learning curve.

We have been using Unicom Intelligence at NatCen for our web and CATI surveys since 2015 and had
some existing question templates. This meant we had a starting point for the design and functionality of
what we wanted for web. It also meant programmers and researchers had certain expectations on how the
questionnaires would look and function.

The Blaise 5 templates team is headed up by a researcher from our methodology department and includes
a technical resource, as well. Testing the question templates has been a combination of internal testing
and testing with real people using cognitive interviewing techniques where a researcher leads a
respondent through a test interview and asks for feedback.

Some initial requirements were:

• the templates should work on small and large screens
• they should work without using a mouse; this meant we would test the large screen template

using a keyboard only

> back to Table of Contents

3

• they should have a hidden DK\RF feature
• they should use a concertina\collapsible grids
• they should use the NatCen corporate brand colors
• they need to handle soft and hard checks
• all data needs to be saved, even if the browser is closed
• they should allow the collection of paradata
• they should make it easy to program exclusive codes
• they should include a help feature for some questions to provide additional instructions for

respondents

We did a review of available templates. We chose two of the resource databases shipped with Blaise in
addition to ONS templates that they provided to us.

Looking at these three resource databases gave us a starting point and some ideas. We created a resource
database with a small and large layout set in order to minimize maintenance.

The small layout set is automatically selected if the screen size is less than 1024 pixels wide.

1.4.1 Designs for Categorical Questions
The categorical questions used a large input control, and the design requirement included changing the
background color of the selected category.

In this case, all the category text is clickable, so it works similar to a button. In an earlier design, the
background color of the selected category changed to show that it had been selected. This caused the
screen to repaint and change the focus on questions (we called it the ‘wibble’). With long category lists,
this looked odd, and we abandoned this approach. In the current version of Blaise, which uses CSS, this is
no longer an issue, so we may return to the original design.

Figure 1. Examples of Single and Multiple Category Selection Question Template, with No Help Information, for Small
Screens

> back to Table of Contents

4

Figure 2. Example of Categorical Question Template, with Expanded Help Information

1.4.2 Designs for Grid Questions
We are using a collapsible grid instead of a traditional row and column grid. This works better on small
screens and means we can use the same design for large and small screens.

Figure 3. Example of Collapsible Grid Question Template

> back to Table of Contents

5

We conducted a number of tests with internal and external users.

For CATI, we wanted to reuse the same templates that we had used for web, but we had to add some
additional features.

For the CATI resource database features, we made some information available in parallel blocks. We also
added a status bar so interviewers could see the question they were working on. In some instances, we had
question texts with different phrasing for different modes.

In the receipt page, we added functionality to be able to restart the previously opened case, start a specific
case with a serial number entered, or move on to the next case.

Figure 4. Example of Receipt Page (After Appointment)

2. Case Study—Technical Education Survey (Tech Ed)
2.1 Background of Tech Ed
Tech Ed is a longitudinal survey of young people enrolled in technical education courses, where we ask
the same learners to take part in this study every year during their courses.

This is the first major piece of research into the government’s technical education reforms and will help
the Department for Education ensure that the new study programs are working as intended. The survey
aims to provide insights into which young people are choosing the technical education route and why,
what their experience of technical education is, and what short-term outcomes young people achieve.

The fieldwork has a ‘web-first sequential mixed-mode’ design with two modes: Web (CAWI) and CATI.

All participants were initially invited to complete the survey online. Subsequently, cases still not
completed were released to the Telephone Unit in batches (using DayBatch select filters).

The sample consisted of named individuals, with email, postal address, and multiple phone numbers
possible for each, (i.e., a landline or mobile number, and in some cases both numbers were available). The
sample data in the call scheduler was managed at the case level (the individual).

> back to Table of Contents

6

The study runs over multiple waves (up to March 2024).

We used Blaise 5 for the following rounds of data collection:

• 2022
– Wave 2 (W2) Survey (Pilot and Mainstage), sample of 1,100 cases
– Wave 1 (W1) Survey (Pilot and Mainstage), sample of 23,000 cases

• 2023
– “Post-course Mainstage” (for those that had just completed the program), sample of 1,300

cases
– “In-course Mainstage” (for those that were still in the program), sample of 15,000 cases

2.2 Mixed-Mode Instrument Development
2.2.1 2022 Sweep
For the first (Blaise 5) round of data collection in 2022, we converted the code from our current web
platform, UI, into Blaise 5. We used Traditional Solution for single-topic projects where the data
collected in the treatment surveys (Dial and Appointment) were copied to fields in the main data model.

The Dial instrument was the entry point for the interview. One of the Parallel blocks displayed a selection
of fields from the sample block (variables had to use labels).

The appointment instrument was used to record an appointment and for interviewers to make remarks,
which were copied to the Dial questionnaire. We didn’t have a Nonresponse instrument.

The main instrument held the survey data (and allowed other outcomes, such as NoAnswer—Parallel
block) and the CATI Admin data.

Using Traditional Solution meant that we did not have a starting page for the CATI interviewer to use (to
select a survey from a list), so an HTML page was created to allow interviewers to select a project or a
specific serial number within that project.

NOTE: CATI Dashboard in our organization is currently only used by Telephone Unit (TU) Supervisors
and not CATI interviewers, so they don’t have another way to start specific cases.

Figure 5. HTML Page Used in Traditional Solution without a Portal

> back to Table of Contents

7

2.2.2 2023 Sweep
For the 2023 round of data collection, we used the previous (2022 Sweep) Blaise 5 code as a starting
point, but we set up the projects using the multi-topic solution.

The multi-topic approach consists of a series of linked instruments; namely, the Launcher, the Portal
(NOTE: we did not use the Multi-Scheduler), an Appointment instrument, a Nonresponse instrument, and
a Topic instrument.

The interviewer selects a Topic survey from the Portal and a case is delivered automatically.

2.3 Reasons for Switching to Multi-Topic Solution
Why did we change the approach between rounds of data collection?

Firstly, for this longitudinal project, it was deemed to be preferable to have the CATI Admin data
separated from the Topic instrument. The Launcher questionnaire collects the CATI Admin data and
includes an array for up to 30 calls (resulting in large file sizes).

Also, we required an entry point that allowed an interviewer to choose a project from a list of projects. In
this event, we didn’t have any overlap in the fieldwork of the projects in the various waves of Tech Ed, so
the Portal only listed one project at the time. However, the Portal was deemed as an important element for
CATI surveys.

The long-term aim was to be able to use the same Launcher for all our projects. However, there were
different (sample) requirements between waves of Tech Ed (emails sent from the Launcher).

The Nonresponse instrument became necessary to ensure that cases coded as nonresponses in the
Launcher/Topic parallel block were registered as nonresponses. (We need to evaluate if this will still be
required in future releases of Blaise).

2.4 CATI Launcher for Handing Multiple Numbers and Call Results
The CATI Launcher is the instrument used by the interviewer to make the initial contact with the
respondent and it contains (besides the sample block, which mirrors the sample block in the Topic) the
call history and contact history.

Blaise gives you a call per case. In the Launcher, we have a dial outcome per phone number called. At
the end of the dial loop, we pass the call result back to Blaise based on the rules set in the Launcher. This
will result in one call.

Our Launcher, potentially, handles a series of up to 30 dials, which will result in one call.

The Launcher was adapted to meet these specific requirements:

• Dial outcomes are recorded for each phone number tried within a case. The telephone number
status is based on dial outcomes.

• Prioritized call outcome is computed based on dial outcomes/questions to interviewer, and this is
used for interaction with the call scheduler.

• Case-level status and outcomes are derived from call outcomes.

> back to Table of Contents

8

2.5 Removing Web-Completed Cases and Freephone Opt-Outs from CATI DayBatch
We had to give TU Supervisors a way to create the DayBatch and remove the completed cases (primarily
from web) from the DayBatch during the day (NOTE: This was a bug reported to Blaise, which was fixed
by the Blaise Team in a later build, but we weren’t able to upgrade before fieldwork).

We scheduled a task, which invoked Manipula to create the DayBatch each morning and, after the
creation, the completed cases were removed from the DayBatch. Completed cases were removed from the
DayBatch at other times during the day as well. This worked OK.

We created a custom “report” on the Dashboard (i.e., a Manipula script that created the DayBatch and
removed completed cases from the DayBatch). There were a large number of cases, so we used
SETRECORDFILTER to speed up the processing.

Also, we had to invoke Manipula from an intermediary script, as we discovered that the script was timing
out after two minutes.

2.6 Monitoring Fieldwork Progress, CATI Dashboard, Custom Reports
In order to monitor the progress of fieldwork, we exported and merged data in Manipula, including key
information from the Topic (sample + outcomes) and Launcher (call history) data. (Longer term, we are
aiming to use a data mart for reporting.) The exported .csv file was read in as a data model in Excel with a
number of pivot tables showing the outcomes by telephone batches.

2.6.1 Dashboard
The TU used the Case Info tab, which shows the number of calls, call results, inclusion in a day batch,
appointment details, etc.

One issue we had was that it can sort by number of calls (in the build of Blaise used for Tech Ed), but TU
want to be able to filter all cases that meet a specific number of calls.

We also used the Appointment Overview custom report. The latest version, amended by the Blaise Team,
includes the Primary key.

2.7 Conclusions
Tech Ed was our first Blaise 5 project, and as such, there was a lot of work involved to set up our first
Blaise 5 project.

Further work is required to standardize the sample block and make the CATI Launcher project-agnostic.
This will be challenging due to the complex and varied requirements of our projects.

There is continual development. What was done so far is not set in stone. We may revisit the multi-topic
approach.

Separation of CATI Admin data from the Topic data works fine for longitudinal studies. We are exploring
using an “all-in-one approach” for simpler, cross-sectional surveys, some of which do not have the same
requirements as longitudinal studies like Tech Ed (and have no need for a complex Dial questionnaire).
They are simpler and more streamlined, with less detail tracking.

New releases of Blaise have taken on board requirements such as the ability to identify hard appointments
on Dashboard and filter cases by number of calls, both of which are important requirements for our TU.

> back to Table of Contents

9

The Blaise Team also took on board a requirement to display the Primary Key on the Appointment
Overview report (Dashboard).

2.8 Challenges
One key challenge is that there are different requirements for various projects, making it difficult to
standardize the Launcher!

Sample block standardization is also difficult to achieve.

3. Redesign of Sample Management (SCS)
In our current survey platform, we are using a Sample Management system designed and implemented
over 10 years ago, which has evolved over that time to handle a variety of changing business
requirements. As part of our Blaise 5 journey, it was deemed critical to replace this system with an
improved SCS to provide the needed functionality and to extend that functionality for greater efficiencies
and streamlined and automated business processes.

One key architectural and design decision was to have a tighter integration between this system and
Blaise 5, and to synchronize data between them.

The system is developed in C# and uses the Blaise API for integration.

3.1 Integration with Blaise 5 Using APIs
The key features that the SCS system integrates with Blaise 5 are the following:

• Analyzing Sample definition in Blaise questionnaire and setting up corresponding data definitions
in SCS

• Analyzing Administrative and Communications blocks in Blaise questionnaires and setting up
corresponding data definition for imported data in SCS

• Loading sample data in SCS and synchronizing this to the Blaise questionnaire
– Data quality checks are performed on data when it is loaded
– The system checks for sample updates and synchronizes to Blaise on an hourly basis
– It is possible to specify the Login Questionnaire, CATI Launcher, and main Topic

questionnaire, and all of these will be synchronized from SCS to Blaise
• Automatically importing data from the Blaise questionnaire (Admin and Communications blocks)

into SCS on an hourly basis.
• Synchronizing CAPI data with our Case Management System (CMS) using the SCS. For this, we

are using the synchronization component of the Blaise CMA application. Once cases have been
allocated to field interviewers and issued to CAPI mode, they are synchronized through the CMA
Launcher database to our CMS system and the Blaise questionnaire.

3.2 Other Functionality

• Automating communications (survey invitations, reminders, thank-yous)
• Sending incentives (gift vouchers)
• Managing incentives and thresholds
• Offering freephone (Help Line) functionality
• Merging contact updates from multiple sources
• Allocating and issuing cases to field interviewers

> back to Table of Contents

10

3.3 Challenges
During the development cycle, we need to program the Blaise questionnaire and begin testing while
setting up the SCS system for the new project and loading sample data for testing. Often the timetable is
very tight and managing the quick turnaround of changes can be challenging.

As we start migrating more surveys to the new Blaise 5/SCS platforms, it will become increasingly
challenging to manage Blaise version upgrades with live surveys running in Production. Extensive testing
will be required, as well as a good understanding of compatibility between developer versions used for
the questionnaires and the server versions.

We have had some issues with the performance of components in SCS that are integrated with Blaise
using the API. The Blaise Team has provided some additional methods to help improve this. Also, the
SCS development team are optimizing their code for other performance improvements.

There are some challenges with the notion of using Blaise APIs vs. Manipula for the development of
extended systems and integration with Blaise 5. NatCen’s approach is in favor of using APIs and C# for
such developments. However, for ad hoc tasks with quick turnarounds, we may still need to use Manipula
at times. We are uncertain whether Manipula performs any better than the API, and we may need to do
some specific testing around this.

4. What Lies Ahead?
4.1 Multimode CAPI with CAWI and/or CATI
CAPI interviews are done offline, while CATI/CAWI surveys are done online. We are exploring the best
approach for keeping them in sync and reconciling any differences afterwards. This involves coordinating
the assignment of cases to CAPI interviewers while web and/or CATI interviews are being conducted. It
is also necessary to determine the best means for informing CAPI interviewers about surveys completed
in CAWI or CATI mode after they have been allocated to field interviewers.

We are working through the various options and best approaches for handling the multilevel hierarchy of
sample data for some surveys (e.g., household and individuals) across different modes. For web mode, we
may want each individual to complete their section of the survey simultaneously, which implies splitting
the individuals into a separate questionnaire and possibly merging them back into one combined
household and individual survey questionnaire (and one case) later. Alternatively, we may have to restrict
it to one individual completing the survey at a time, and thus keep the household and individual sections
of the survey together in one case. For CATI or CAPI mode, we likely would want the interviewer to
access the household and all individuals in it to complete various parts of the survey at once.

> back to Table of Contents

1

What Was Experienced by a Skilled Blaise Programmer in
Transitioning from Blaise 4 to Blaise 5
David Dybicki and Peter Sparks, Survey Research Center, Survey Research Operations, University of
Michigan

This paper discusses how we transitioned to Blaise 5 from Blaise 4, taking into consideration
organizational requirements and standards. To accomplish this, we had to be open to using features in the
new environment and be willing to change from the prior platform.

1. New Features
Blaise 4 is essentially a single-user application that multiple users can use simultaneously but which runs
as a single instance on a computer. Everything it needs to do is self-contained within the Dep.exe. Blaise
5 is well suited to work in a server environment but is complex because the functionality has been divided
into separate server roles that communicate with each other (audit, CATI, data entry, resource, session,
web, manager) and that may be on different servers (we typically have front-end web servers and back-
end servers that handle the other roles).

Blaise 5 uses server events and listeners to communicate between the services on various servers and has
also allowed the Blaise survey to raise custom server events. So, the management of Blaise surveys can
be highly customized. For example, several surveys use the server events (such as the survey Completed,
Expired, Aborted, and custom values) and write the resulting case status to a management database. The
recipient of the events, usually a survey-specific Windows service, can parse custom events and perform
complex operations, run stored procedures, write logs, and so forth that make the survey(s) operation
seamless. This extension of Blaise is more than just running the survey and waiting for the program to
run; it is interacting with Blaise at a new level.

Managing users within the Blaise 5 environment also changed dramatically. In Survey Research
Operations’ Blaise 4 CATI sample management system (SMS), users are assigned roles and groups, and
passwords are managed by Maniplus using additional Blaise databases. In Blaise 5, these functions are
maintained within the Blaise server manager in the Users tab. Because of how Blaise works with Active
Directory, the user’s password is no longer explicitly managed by SMS but can instead be synced so that
it matches their login. This makes it easy for the user to no longer remember two separate passwords and
places the management of users in one area.

These are just a couple of examples demonstrating significant payoffs for investing the time to learn the
new development environment and its capabilities.

2. Layouts
It was not easy to assimilate all these new ways of doing the work without considering them from the
Blaise 4 perspective. As a result, there was an effort to try and force Blaise 5 to look and behave in
familiar ways. The reasoning was to try and make the transition smooth for interviewers and projects, but
the attempt was ineffective. By analogy, it was a case of trying to put a new sporty engine and features
into an older style vehicle body, and it doesn’t work well. We did learn a great deal in the process, but
eventually, we embraced Blaise 5 and took advantage of the new capabilities to expand our capabilities.
Layouts in Blaise 4 can also be complex (mode library, menu, configuration, datamodel properties), but
not to the same degree as in Blaise 5. The Blaise 5 Resource Database, .blrd, contains all of the Blaise 4
display items but is organized in a way that requires a different way of thinking. Using the layout view
and property windows in the Control Centre was key to working with the layouts. Initially, we struggled

> back to Table of Contents

2

to relate all the different pieces together (templates, properties and parameters, layout sets, master pages,
expressions, field references, etc.). However, as we gained experience, these tasks became more
manageable. We learned that “less is more” (use less customization per page and more standards).
We realized from our experience in using Blaise 4.8 that we needed standards in the new environment. It
was essential to hash out what is required, and similar to having a universal starting mode library file, we
worked on (and are still working on) a standard blrd file. We have found that we “borrow” features that
work from one study to another but maintain standards for the look and feel of the survey where possible.
This builds solid and predictable input screens familiar to all interviewers, study staff, and programmers.

3. Texts and Interfaces
Working with screen text and layouts in Blaise 4 is well known and comfortable. Managing how a
particular question looked on the screen meant working with the mode library editor (InfoPane,
FormPane, and Grids), font enhancements (like “@B” for bold and “@I” for italic text), datamodel
properties (language character encoding and culture), and the menu editor (menu items, panels, and
actions). Because of our expertise, surveys can be programmed quickly and efficiently.

But Blaise 5 opened a new world to managing the survey look, feel, and user interaction. The Resource
Database, along with the Layout tab and properties panel stored in the .blax.layout file and the Layout
section in the source code gave a great deal more flexibility. Font definitions are now named, language
text can be copied and pasted directly into the source code (no ANSII transformations needed), and
HTML-like commands can be used for additional formatting with text areas.

There are also runtime interactions between the survey and the interface via field reference mappings,
languages, roles, type references, function declarations, and template parameters. The complexity of
putting text on the screen has increased, but the reward is having an adaptive context-adjusted display that
couldn’t be done in Blaise 4.

4. Blaise 5 Resource Database
The Resource Database can be considered its own programming area of expertise. Many new concepts are
presented: layout sets, templates (such as master, field pane, input controls, and grouping), template parts,
default templates, style elements, styles, text roles (embedded), media, master pages, containers (such as
grids, panels, groupbox, and areas), controls (like labels, buttons, image, and hyperlink), size allotment
(stretch, auto, percent, and pixels) and embedded sizes, applicability conditions, parameters, events,
actions, shortcuts, and custom properties.

All of this presented new challenges and forced us to think in novel ways about defining the look and feel
of our surveys. Although some parts were easy to understand (styles, style elements, and font definitions),
others were harder: text roles, field references, texts, media, templates, and resource sets. One of the most
significant concepts we had to grasp was the use of containers within a template and how the properties of
auto, stretch, undefined, *, %, and pixels all worked, especially when a container was within a container
with different size attributes. It took many hours of trial and error before we understood how everything
worked.

5. Abandon Prior Tools and Features?!
Many tools and features are tailored to the environment being used. For example, in Blaise 4, there’s the
Menu Editor, Data Centre, Bascula, Cameleon, Delta, X-Tool, Mode Library Editor, Dep Configuration,
Hospital, and Database management (copy, delete, move, rename, create). In Blaise 5, many of these are
no longer needed because the environment is very different. For example, all Blaise 4 menu functions
(assigning layouts to fields, layouts of pages, menu items, actions, and panels) are instead found in the
Blaise 5 Resource Database, which is managed in the Layout view of the .blax file, or are synchronized

> back to Table of Contents

3

back to the source code in the Layout section. As a result, there’s no “Menu Editor” in Blaise 5, and so it
is strictly a Blaise 4 tool that’s no longer “needed.”

Other utilities, such as Cameleon, essentially became redundant when full access to the meta information
in Manipula became available. Blaise 5 moved all of its data storage to relational databases, so data
management features (like Hospital) were no longer needed or were moved to new tools. For example, the
ability to monitor databases is in Blaise 4 but is accomplished somewhat by the Session Viewer or by
running queries against the audit or session data.

Some features of the Blaise 4 language, such as the alien procedure, were not brought forward to Blaise 5.
This is used to make custom entry boxes, scan through the datamodel structure for additional checks, and
perform logging or other special actions but is no longer needed because the Resource Database has
conditional logic and access methods that provide the same functionality.

While knowing how to use tools and features for a particular environment is always beneficial, allowing
them to be left behind when moving to a new one is necessary.

6. Programming Standards
At the Survey Research Center at the University of Michigan, we have had many years of programming
in the Blaise 4 environment and have developed a set of survey programming specifications and
standards. These are used as a guide for successful software development and are applied to every Blaise
survey we do. The longer we used Blaise 4, the more complete our standards became.

The challenge in transitioning to Blaise 5 was to make similar standards for code writing and presentation
to the interviewer/user of the instrument. This task is complicated to accomplish when the capabilities are
unknown and the programming environment is new. We used the Blaise 4 standards as a starting point,
but since then, we have been adapting and changing them to fit the new system. These standards are
critical for helping programmers build an instrument that meets and exceeds the client's expectations.

We discovered that we had to learn the new system comfortably before effectively writing new standards.
We started with what we knew and then adapted them as needed.

7. Programming Concepts Changed
Although it’s very comfortable to remain in the old way of thinking and using programming methods and
utilities, it is best to change with the new environment. However, there’s a price to be paid, and that price
is a steep learning curve.

For example, when introduced to the new GROUP structure, it was confusing, and we assumed it
functioned the same way as BLOCK but with some tie-in with the layout. Instead, the GROUP structure
is a hybrid where it allows fields to be displayed together using a grouping template, but in terms of
implementation, the RULES for the fields involved belong to the GROUP (like it is within BLOCKs).
But it is unlike a BLOCK in that fields and auxfields are not stored within the GROUP level but are
stored at the same level where the GROUP is defined. This “old” way of thinking caused a great deal of
head-scratching until the new concept was learned and our assumptions were abandoned.

In Blaise 5, there were many new added features that alter how the surveys are programmed: constants,
user-defined attributes, field properties (e.g., isVisited), conditional logic within templates, field
parameters, role texts, and many more that control the logic flow and interface. The key to programming
is knowing exactly how these new features work and using them correctly (not the old ones).

> back to Table of Contents

4

As we became better experienced and more confident in the Blaise 5 environment, we took advantage of
new features and methods to improve the surveys and performance. We let go of old strategies that no
longer worked well or were prohibitive to maintain. In addition, we continued to learn by trying new
features and methods. We worked on improving Blaise by reporting bugs and asking for help when we
couldn’t figure it out independently.

8. Interview Interface Changed
In Blaise 4, we were comfortable with a display of question text at the top panel (InfoPane), information
about the question answers in the middle panel (code responses or range information), and then entry for
the field in the bottom panel (FormPane). There was just one question per page, and navigation between
fields was all done in the field pane. DK/RF/Remarks symbols appeared next to the entry box, and help
popped up in a separate window.

In Blaise 5, all of this changed: we could freely rearrange all these parts, the entry field could be placed
practically anywhere, there could be multiple entry fields, help appeared in a different text box, controls
could be hidden/shown on demand, menu controls were largely removed, previous/next buttons became
the norm, and screen displays became dynamic.

This impact is a far more interactive display for the interviewer and the respondent and matches what is
used in modern applications. It’s important to “keep with the times,” even though the basic functionality
is present in both Blaise 4 and Blaise 5. That means being a Blaise 5 programmer also means another set
of skills is needed in the programming toolbox, and that is being a web designer.

9. APIs and Versions
Blaise 4 is very rich in terms of providing the ability to dive into the metainformation of the datamodel
and retrieve everything: every bit of rules logic, parameters, fields and attributes, texts, languages,
layouts, code texts, and so forth. Blaise 5 is also very rich and provides all the same information.

However, trying to navigate through the datamodel using the application programming interfaces (APIs)
is very different between the two platforms, and it simply did not work to apply Blaise 4 API methods to
the Blaise 5 API. We found the best method to learn the new API was to step through sample programs
using the .Net debugger and examine the areas of interest (objects, properties, and methods). Once we
found how to retrieve the information and the context in which it was used, we implemented it within our
own utilities and built up our expertise.

We also had to learn what files and DLLs had to be present for running our utilities and licensing
requirements to deploy and use them. Part of the lessons we learned is that any program that uses a
version of Blaise tends to be version specific. That is, suppose a data utility is compiled using Blaise 5.6,
and then is used against a Blaise 5.13 database; it may not function properly, but a compiled utility using
5.13 may work with Blaise 5.6 data. Blaise extends the Blaise 5 API with each new release so utilities can
reference older methods using the new API.

We recommend upgrading utilities to use the new API (as appropriate) and methods whenever possible to
take advantage of bug fixes and new features.

10. Data Storage Expanded
In Blaise 4, there was one “flavor” of data storage: a proprietary format that consisted of several files,
along with additional utilities to manage the storage (such as Hospital, Control Centre copy, move,
rename, and delete). All this changed to a relational database in Blaise 5. In addition, many more options
were given regarding internal table structures with data partitioning (Stream, Flat No Blocks, Flat Blocks,

> back to Table of Contents

5

In-Depth, and single table), storage types (Non-generic and generic), and platforms (SQLite, SQL Server,
Oracle, Excel, MS SQL, among others).

In addition, the audit information changed from a file into a database with two tables. Both require
parsing, but working with the database using SQL queries is much easier.

What constitutes a data change is also different between the two versions. Changing the name of a field in
Blaise 4 is not considered a data change, but moving that field to a different position or changing an
attribute will require a data migration. In Blaise 5, the opposite behavior occurs (name changes require
migration, but moving names/changing attributes don’t).

Because of the relational database, Blaise programmers had to pick up additional database skills and
understand that the data was no longer directly accessed but instead went through a data link file
(connection properties) managed by Blaise. Hence, if the data link referenced a survey on a server, no
matter where the .BDIX resided, the data could (potentially) be retrieved, modified, and written. As a
result, we learned a great deal about database user accounts, logins, schemas, and the like.

An area that we have not explored yet but are willing to try is cloud storage and hosting. It is possible for
specific surveys, but additional areas must be scrutinized: security, availability, reliability, cost, etc.

The basic concepts of working with data remain a great starting point, but the new environment requires
specific knowledge of how the system works. Only the minimum of data manipulations can be
accomplished without the additional training.

11. Audit Information
Likewise, the audit information in Blaise 4 was no longer stored in a single text file (or even multiple files
or multiple cases within one text file) but instead is stored in a relational database in Blaise 5. Our utilities
that parsed the keystroke-level information started as the base for new software but quickly changed and
became customized to the new environment. However, the function of our utilities remained the same: to
analyze the data for section and field timings, recover cases, and understand areas where a given survey
might be having issues.

12. Session Data
In Blaise 4, just one database contained the initial preload, working cases, and completed cases. If a case
needed to be restarted, it was simple to run a Manipula Script. However, the Session Database (the
concept first introduced in Blaise IS) took more effort to work with. The data from the main database is
copied to the Session Database, and then all further breakoffs and resumes use the Session Database. We
quickly discovered that we must retrieve cases from both Main and Session to get a complete snapshot of
production.

This has several important implications: any data pulled from the main database will not have partial case
data unless the session data to the main database is explicitly copied (usually by a Manipula Script), or the
case has been completed. Therefore, tracking the overall status of a web survey can be inaccurate when
only looking at the main database. In addition, the Session Database stores the “state” of the survey: every
local, auxfield, and field property is present in the data so that when a case resumes, it is in precisely the
same place where it left off. This caused all sorts of problems for our Blaise 4 way of thinking (auxfields
and locals were initialized every time a case started) until we understood that we had to explicitly manage
this “reset” by passing in a parameter/flag to initiate code to perform this function.

> back to Table of Contents

6

The automatic storing of case data in the Session Database has proved to be a bonus for some situations
and a hindrance for others. For example, when case data is accidentally reloaded to the main database, it
is possible to restore cases quickly from the Session Database by copying them to the main database.
However, changing preloaded incentive amounts is more challenging because the session data cannot be
written directly. (There are a few methods to address this: one way is to download the session data to the
main, delete the session data, and then update the main data with the new incentive. When the case is
restarted, a new session will be created from the main data.)

Like other new methods in Blaise 5, this initially caused us problems from our lack of understanding, and
we tried all sorts of ways to get around what we thought was a restriction. After we gained the necessary
knowledge and worked with the feature, then we gained the benefits it offered.

13. Manipula
Manipula has been the mainstay workhorse for our use in Blaise 4. It has been critical for our processes:
loading preload, moving and updating data, exports, alien procedures, specialized parsing, interaction
with CATI, creating crosswalks from the meta information, and so much more. We literally could not run
our surveys without this valuable tool.

Blaise 5 Manipula is just as valuable. However, like many areas in Blaise 5, it was the same and not the
same. During the transition period, as Blaise 5 Manipula was still being developed, we had to
learn/relearn the language because it was a work in progress. Language features were removed because
those areas were no longer part of the Blaise 5 system, and others were added to work with new features
(like write interceptors, CMA, and session data). Maniplua was also updated to use Action Setup
Manipula Scripts or Manipula Dialogs.

Because Blaise 5 Manipula is so diverse, powerful, and flexible, we are still learning its capabilities and
are hard at work to become even better experts. For example, many API functions are available within
Manipula, but it takes advanced programming skills to dive into them.

14. Blaise Control Centre Changed
A big challenge has been for programmers to learn the Blaise 5 Control Centre, and it seems that
everything changed. We had been familiar with menus, file types, projects, tabs, and where all the parts
could be found. However, in Blaise 5, there were now solutions, packages, different previews for different
environments, tool and property windows that can be dragged/dropped/resized, different file types,
context-sensitive menus, and so much more. It took some time to become familiar with the panel
arrangements, especially the placement of the Source, Meta, Settings, and Layout tabs for the .blax file.

Editing in the source code was different; some familiar keystrokes were no longer present, new ones were
added for new features, and a few changed how they behaved. This is typical for different software
environments.

Regarding functionality, Blaise 4 and Blaise 5 perform admirably for what they’re designed to do.
Multiple parts of Blaise 4 are integrated into Blaise 5 in a way that makes sense. For example, the Delta
tool in Blaise 4 shows diagrammed program flow for a datamodel. It works with the datamodel and acts
like a “plug-in” added to the Blaise system. In Blaise 5, it’s integrated into the menu by opening the .blax
in the Control Centre—selecting the Meta view—then clicking the Statement graph button.

There’s additional code handling functionality that’s built into Blaise 5. Some handy shortcuts are
comment/uncomment code, bookmarks (also found in Blaise 4), and source structure browser. In Blaise 5,
a new editor concept of code snippets can be customized to save time writing standard programming

> back to Table of Contents

7

code. The Find/Search & Replace also have been changed and function differently. For example, there’s
no “enhanced” find/replace in Blaise 5 because it’s controlled by the scope of the action (selection,
document, project, and solution).

Autocompletion and parsing while editing are features that are strictly in Blaise 5. Because of the new
editor and functionality of the Blaise 5 Control Centre, there has to be a period of adjustment before
becoming proficient. The transition period may be frustrating and slow, but the result is a greater ability
to program efficiently.

15. Interviewer Help
The help file for Blaise 4 has always been a mainstay for our interviewers and desired by our project staff,
but it has become problematic: support for the help file format has been deprecated. This means there is
extra setup on the interviewers’ laptops to install software/DLLs, and sometimes extra effort for the
Blaise programmers to keep this feature working. It may become unusable if the operating system no
longer supports the software to run the help.

In Blaise 5, the help moved into the survey itself as a role text and can be mode specific and easily
translated in multiple languages. The change means the staff no longer edits an RTF file, but the
programmer has to place the text into the survey. The interviewer views help differently by typically
using a button on the screen to show the help text on the page, rather than seeing the help in a separate
window.

16. All Interviewing Modes Possible
Blaise 4 had one mode with data collected in different environments (laptops, desktops, and via
management systems), so each survey was typically programmed for each particular survey mode.
However, Blaise 5 has true modes (CAPI, CASI, CATI, etc.) that can be used in different environments,
such as iwer-assisted CAPI + DEP on remote laptops, iwer-assisted CAPI + Web on local computers,
respondent self-collected CASI + Web on desktops/phones, and so on. Typically, the attributes in our
Blaise 4 environment have been defaults of DK, RF, and NOEMPTY, but Blaise 5 is richer in that all
these are contained within one datamodel and the mode can be set at runtime. This gives excellent
flexibility and consistency for the surveys.

17. Mode Switches
Because our Blaise 4 data was collected in essentially one mode, switches between modes was rarely an
issue. However, planning for mode switches has become a necessity when using Blaise 5.

As noted above, Blaise 5 allows multiple modes in one survey, and the attributes of self and interviewer
assisted tend to be opposite of each other. Going from DK and RF allowed to not allowed implies these
values are dropped, while going from EMPTY to NOEMPTY means questions that have been skipped
will now be asked. Different methods have been used to implement mode switches, such as blocking
completed sections, restarting partially completed sections, copying unique mode-related fields between
mode switches (and assigning correct values), and not allowing mode switches.

18. Security Enhancements
The Blaise 4 data is stored in a proprietary format that is readable via the data viewer, Manipula, and BCP
programming—all different ways that access is granted openly. Security on the data is maintained at the
file and directory levels.

> back to Table of Contents

8

However, in Blaise 5, the data may still be in a file (.bdbx using SQLite—and the same file security
methods apply) or in an SQL server or other relational database software where it is referenced from a
data link file (.bdix). Learning how best to secure the survey data (audit, session, and main survey data) in
the new environment was essential. This .bdix can be put anywhere and the data can be accessed (with
caveats) as long as there’s a connection to the server hosting the data. Therefore, careful attention to the
location of production .bdix files is needed to avoid unauthorized access to respondent data; that is,
production .bdix files should be kept in secure locations. Blaise 5 allows password protecting the .bdix
file to limit this possibility, which is a feature not available in Blaise 4. Additional welcome security
measures have been implemented in general to the Blaise system, such as in the AD synchronization,
server manager, and server manager roles and user passwords.

19. Increased Use of Client/Server
Blaise 4 (using Blaise 5 terminology) is a thick client survey (survey + data collection is done without
server contact). In Blaise 5, most surveys use a thin client (web survey with heavy server use) to retrieve
survey pages and store survey data; otherwise, the Blaise 5 thick client is similar to the Blaise 4 survey.
We did not grasp this concept initially, and only after working with Blaise 5 after a while did it make
sense. We had to move out of the prior thinking and into the client/server world. We’re now much more
familiar with the capabilities of Blaise 5 and have been able to use it for self- and iwer-assisted surveys in
DEP, custom Dep, and client/server. It took some time to gain expertise and understand how the pieces
work. We had to invest time and effort into building login applications (portals) for respondents, learning
IIS management, Blaise server management, building a custom DEP, and writing upload and download
interceptors in Manipula.

20. Conclusion
Blaise 4 and Blaise 5 are rich, complex, versatile, adaptable, and robust, and they can handle difficult
situations. In moving to Blaise 5 we viewed nearly all the new features, methods, editors, and utilities by
looking through the Blaise 4 lens, which, in effect, distorted the new reality, caused more work, decreased
our productivity, and limited what could be accomplished. As we gained understanding and embraced the
new ways of working with the system, we enjoyed more excellent capabilities in our surveys, faster
programming, and more possibilities. Not everything is peaches and cream in the new environment, and
there are still difficulties to overcome, but we have grown to appreciate Blaise 5 without the Blaise 4
overtones. We can apply these lessons to any new software or environment and admit that we still have
much more to learn.

> back to Table of Contents

1

A Short History of Blaise Code Generation

Leif Bochis Madsen, Statistics Denmark

1. Abstract

The history of Blaise is also a history of finding easy ways to make specifications for questionnaires without
needing to write Blaise code—either because the subject matter specialists who are designing the surveys
are not familiar with the writing of code or because the writing of code is simply a tedious and unwelcome
task. Besides, many surveys originate from specifications already described in, for example, database tables
or metadata repositories—and nobody wants to write similar specifications twice in different syntaxes.

This paper describes various ways of generating Blaise code from external sources—or via alternative ways
of describing questionnaires—primarily from work done in Statistics Denmark, but with reference to
experience from other organizations. It includes a discussion of benefits and limitations of the different
approaches.

2. Introduction

Recently, I had the pleasure of introducing a group of IT staff members from the Jordanian Department of
Statistics to the Blaise Survey system and showed them how to use Blaise to implement questionnaires.

When I started to make some simple examples of Blaise code and continued to show the famous Flight
Survey demo code in order to exemplify all the nice features and the structure of Blaise code, I was met
with a polite, but unmistaken, disappointment.

It was clear that an easier way of “putting the questions into Blaise” was requested, and I remembered the
old fact that IT professionals don’t want to write code when it is so much easier to (make other people)
generate it.

Luckily, I could—after a few hours of work—get back and successfully demonstrate one of our Blaise Code
Generators picking a Word document and nicely producing a Blaise data model ready to prepare.

In the end, I was asked if we could provide the generator for use in the Jordanian Department of Statistics,
and I promised to do so, of course, while also starting to think of how much work it would take to liberate
the tool from our own IT environment.

Afterwards, I started thinking about all the various Blaise Code Generators that people wrote in order to
ease “putting questions into Blaise” and realized that a summary of these efforts and approaches to the
subject would be a good topic for an IBUC paper and presentation.

3. History of Blaise Code Generators in Statistics Denmark

The history of generating Blaise code in Statistics Denmark goes back to the past century.

A variety of attempts to make the “right” and “(almost) complete” generator comprise a long list of
approaches and tools:

> back to Table of Contents

2

At first, various Excel spreadsheets were used to define the questions and answers, with a number of
different structures in order to get as much metadata as possible described. Scripting languages, such as VB
or Manipula, were used to generate Blaise code. Merely copying the contents of a sheet and pasting it into
a Blaise source code would also make sense.

Secondly, a structured Word document supplied with macros could form the basis of a Blaise questionnaire.

A third and more successful attempt is the Word-based Blaise Code Generator for Household Surveys,
which is still used. It is described further in the next section.

The fourth generator is the so-called Business Survey Configurator, also described below.

Finally, attempts have been made to build a Blaise Code Generator in Blaise (i.e., to define a data model
describing a Blaise questionnaire) using the data entry program to describe blocks, fields, datatypes, etc.,
and using Manipula scripts to generate a target Blaise data model. This generator worked fine as a proof of
concept, but due to lack of interest among the targeted users, it was never finished or used for any
production.1

4. Blaise Code Generator for Household Surveys

The aim of this code generator is to provide an easy-to-use way to describe questionnaires. Thus, the
description tool is merely a Word document (or any text-processing document that can be converted into
Word) and is aimed at any customer (internal or external to the organization) with limited or no knowledge
of Blaise.2

It defines a simple “description language” based on tables (blocks), rows (fields), and columns (name,
question text, type name, type definition, filter condition, and comments).

1 I presented this generator at the BCLUB meeting in Copenhagen, January 2016, under the code name “Blaise
Monkey.” I might be able to dig up some remains of the code if someone is interested. I was inspired by [Vreugde,
2003].
2 [Madsen et al., 2013] contains a detailed description of this code generator.

> back to Table of Contents

3

Figure 1. Fragment of Sample Word Document (from [Madsen et al., 2013])

An automated process carries out the following tasks:

1) The Word document is converted into its XML equivalent.
2) The XML document is extracted by an XSLT process, generating Blaise code.
3) Standard templates suited for the overall system architecture are applied.3
4) A version of the data model without rules is prepared in order to facilitate the checking of filter

instructions (the rules part is the difficult part of the data model to produce correctly).
5) This version of the metadata is applied in a process that generates valid rules instructions.
6) Often, a preparable (though not necessarily complete) source code is the result of this process.

The generator was built using XSLT, C#, and Manipula for different processes. It has been slightly
maintained over the years (e.g., updated to possibly produce Blaise 5 code) and is considered a “90 percent
generator” (approximately).

This tool has met the primary aims of being an easy-to-use tool for describing questionnaires and is still in
use in our household surveys division. It is mainly efficient for the generation of first versions of
questionnaires, ready for refinements like layout and more complex rules.

5. Business Survey Configurator

The Business Survey Reporting System started in 2006 using Microsoft InfoPath as a questionnaire
development tool. Due to the end of support for this tool, from 2018, Statistics Denmark started
examining and later migrating Business Reports to Blaise 5. In the beginning, we were using the
Word/table-based generator to generate Blaise 5 code, but soon we realized that we needed to address
compatibility between the XIS4 repository and the Blaise instrument.5

3 This comprised a template for a standard blax file for Blaise 5 and included standard blocks for taking care of, for
example, preloaded data about the survey and/or respondent. Thus, it is possible to use this generator for different
setups by changing a reference to the templates.
4 XML Input System (XIS) is a general system for storage of business survey data at Statistics Denmark.
5 The Business Survey Framework is described in detail in [Madsen, 2018], along with some related tools in
[Madsen, 2020].

> back to Table of Contents

4

The aim of the Business Survey Configurator is to generate a Blaise project ready to prepare—and
compatible with the metadata from the XIS repository. Field names in the XIS repository (as opposed to
Blaise) are treated as case sensitive, so in order to automatically fetch data from a Blaise database via its
metadata and store these data in XIS, it is important that fields in the Blaise instrument use the same
casing as in the XIS database.

Because the XIS repository contains relatively poor metadata—and therefore, only a poor Blaise
instrument could be generated directly from the XIS repository—the Configurator was developed, so
supplementary metadata could now be added to the code generation. These metadata comprise auxfields,
role texts, and precise data types (the XIS repository only defines the basic datatypes integer, real, and
string).

Due to the limited functionality implemented in the Configurator, we are talking about a one-way
generator, and it is only used the first time for an instrument. Needed modifications (e.g., layout
instructions) are all carried out with the Blaise Control Centre. When subsequent changes need to be
implemented for repeated or periodic surveys, maintenance will be done via the existing Blaise solution.
Possibly, if a large number of fields or entire blocks are added, a new version may be generated and new
elements copied into the existing Blaise solution.

> back to Table of Contents

5

Figure 2. Process Diagram for the Business Survey Generator

Soon, the problem of synchronization between the metadata in the configuration and the actual metadata
in the instrument became visible and important to handle.

In order to facilitate use of the Configurator as the first choice of description—and as maintained storage
of survey documentation—we launched an experiment. The experiment was based on the idea that we
could automate the process of adding new elements and retain the changes (primarily rules and layout
instructions):

1) Generate a new solution and prepare it.
2) Extract the metadata as XML.
3) Extract the metadata from the previous solution as XML.
4) Compare the two XML structures, add new elements, remove elements (fields and blocks only)

not present in the new version, and let existing elements stay unchanged (including rules).
5) Generate new source code from the changed XML document (via XSLT process).

Actually, we succeeded in making a useful source code that could replace the previous version, with rules
and layout instructions concerning the previous questions retained. Proof of concept—with one exception:

XIS Metadata
Generate or update

configuration

Configuration
(data)

Field names, field types
(integer, Real, string, group),
labels, repetition (t/f – only
allowed for groups)

Configurator
(tool)

Auxfields, texts,
allowed text roles,
number intervals,
enumerations,
general data types,
sequence,
comments

Generator
Standard

blocks and
templates

Blaise
solution

> back to Table of Contents

6

All comments are removed from the source due to steps (2) and (3) because they are not part of the
metadata.

Keeping the comments would require that they are included in the metadata (e.g., by adding annotations
as a text role), but that would not help with keeping general comments attached to rules instructions (i.e.,
apart from conditions and checks). Thus, this grand idea still needs some further care in order to be
practically useful.

All in all, the Configurator and Generator make a good beginning, and the instruments may be refined
further by editing rules and adding layout instructions in the Blaise Control Centre. It has been an
important tool in order to create Blaise instruments to replace Infopath report forms during our conversion
process. It is, however, not clear how important it will be in the future, where the focus will instead be to
maintain and make changes to new versions of the mainly periodically repeated business surveys.

6. Blaise Colectica Questionnaires (BCQ)

The combination of Colectica and Blaise has gained popularity among NSIs in the recent years. Many
organizations have a policy of documenting their data in DDI, and Colectica offers a user-friendly access
to DDI.

At Statistics Denmark, we have one example of using Colectica-generated questionnaires, as we designed
a questionnaire in 2018 for the survey European Statistics Code of Practice (COP) in Colectica and
generated the Blaise code. However, a lot of changes had to be carried out afterwards, especially
concerning constructs for improving layout. The COP survey is annual, and minor changes need to be
implemented for each version. We realized that the easiest way to accomplish this was to adapt these
changes by editing the Blaise source in the Blaise Control Centre, and that is how we have maintained the
COP questionnaire since the first version.

Apparently, other users of BCQ have the same experience using BCQ to generate the first version and
implement subsequent changes in BCC, though it requires double editing—in Colectica as well as in BCC
[CSO Ireland, 2023].

This autumn, however, we have initiated a project with the aim of modernizing the Labour Force Survey
(LFS). Among the goals are replacement of older software and legacy code (e.g., replacing Blaise 4 with
Blaise 5) and usage of Colectica/DDI for documentation. One of the tasks of this project is about defining
design features in BCQ that may allow us to regenerate LFS questionnaires for every new data collection
period.

7. Conclusions

Many have tried to find their best and most efficient way to generate Blaise code. For example, the data
collections department of Statistics Netherlands uses a very impressive generator based on a Word
document comprising descriptions of questions and a Visio document containing a graphical
representation of the rules, including conditions.6
But also, there are many others, as suggested by the vague selection of papers about the subject in the
references.

6 Described by [Bolster, 2009], [CBS Netherlands, 2023], and [Pisiren, 2023].

> back to Table of Contents

7

Most successfully, probably, are solutions with emphasis on the local culture, language, and environment.
Also, reuse of already available data from different kinds of data sources, including existing metadata or
repositories, is an important foundation for efficient generation of instruments. Existing frameworks for
processing survey data may be necessary to take into account, and cultural views or design traditions may
have impact on the success of a solution.

Maybe the Blaise Colectica Generator will be a good choice for the future of Blaise Code Generation with
its firm base on the DDI standard. However, not all organizations are using Colectica, so there might still
be a need for other kinds of generators.

In general, Blaise Code Generators tend to be deeply rooted in one organization—its culture, language,
design traditions, and habits of documenting and storing metadata. This is definitely also true about the
generators we developed in Statistics Denmark.

Therefore, the implementation of a generator in an organization is a delicate task, and a number of
questions should be taken into account when doing it. Among the questions to address are:

1) Who is going to use the generator and how much knowledge of the survey tool (i.e., Blaise) do
they need to possess?

2) Level of ambition: How much of the code needs to be generated automatically?
3) Are (some of) the data already described in a repository of some kind?
4) Which kind of “description language” can we provide in order to define a questionnaire?
5) How much time may the user spend in order to learn how to describe a questionnaire?
6) How can we automate processing from a description to (part of) a solution?
7) How would we manage regeneration in case of repeated surveys?

The references include a noncomprehensive list of papers from recent Blaise conferences dealing with this
topic.

> back to Table of Contents

8

8. References

 [Bolster, 2009] BlaiseIS at Statistics Netherlands, Gerrit de Bolster; Statistics Netherlands, in:
Proceedings of the 12th International Blaise Users Conference, Riga 2009,
https://blaiseusers.org/2009/papers/4d.pdf

[Bolster, 2013] Generating Blaise from DDI, Gerrit de Bolster; Statistics Netherlands, in: Proceedings of
the 15th International Blaise Users Conference, Washington DC 2013,
https://blaiseusers.org/2013/papers/3a.pdf

[CBS Netherlands, 2023] Unrecorded presentation on Zoom, May 10th, 2023

[CSO Ireland, 2023] Unrecorded presentation on Zoom, June 6th, 2023

[Filippenko et al., 2007] Questionnaire Specification Database for Blaise Surveys, Lilia Filippenko, Joe
Nofziger and Valentina Grouverman; RTI International, USA, in: Proceedings of the 11th International
Blaise Users Conference, Annapolis 2007, https://blaiseusers.org/2007/papers/E3%20-
%20Questionnaire%20Specification%20Database.pdf

[Filippenko et al., 2013] Web-based CAI System for Blaise Instruments Development, Lilia Filippenko
and Sridevi Sattaluri; RTI International, in: Proceedings of the 15th International Blaise Users
Conference, Washington DC 2013, https://blaiseusers.org/2013/papers/3d.pdf

[Joyal et al., 2013] Blaise Code Generator, Eric Joyal, Jason Gray and Sam Threinen; Statistics Canada,
in: Proceedings of the 15th International Blaise Users Conference, Washington DC 2013,
https://blaiseusers.org/2013/papers/3c.pdf

[Madsen et al., 2013] Automatic Generation of Blaise Data Models, Leif Bochis Madsen, Saliha Zayoum,
and Lars Peter Jørgensen; Statistics Denmark, in: Proceedings of the 15th International Blaise Users
Conference, Washington DC 2013, https://blaiseusers.org/2013/papers/3b.pdf

 [Madsen, 2018] Implementation of Blaise 5 Web Questionnaires into an Existing Business Survey
Management System, Leif Bochis Madsen; Statistics Denmark, in: Proceedings of the 18th International
Blaise Users Conference, Baltimore 2018, https://www.blaiseusers.org/2018/papers/5_5.pdf

[Madsen, 2020] Managing a Complex Infrastructure for the Collection of Business Report Forms, Leif
Bochis Madsen; Statistics Denmark, in: Proceedings of the 19th International Blaise Users Conference,
Limassol (Zoom) 2020, https://blaiseusers.org/2020/papers/IBUC2020_S2_4.pdf

 [Ostergren, 2013] A New Tool for Visualizing Blaise Logic, Jason Ostergren; University of Michigan,
Survey Research Center, in: Proceedings of the 15th International Blaise Users Conference, Washington
DC 2013, https://blaiseusers.org/2013/papers/8c.pdf

[Pisiren, 2023] Coskun Pisiren: Presentation at BCLUB meeting. London, May 2023 (available from
BCLUB basecamp site)

[Seymour, 2010] Moving to a Metadata Driven World, Chris Seymour, Statistics New Zealand, in:
Proceedings of the 13th International Blaise Users Conference, Baltimore 2010,
https://blaiseusers.org/2010/papers/3a.pdf

> back to Table of Contents

9

[Vakhaetov, 2010] MetaDEx - From Data Dictionary to Complete Blaise Data Model Code Generation,
Farit Vakhaetov, Department of Population Health Research, Alberta Health Services - Cancer Care, in:
Proceedings of the 13th International Blaise Users Conference, Baltimore 2010 (abstract),
https://blaiseusers.org/2010/slides/p3c%20Vakhaetov%20MetaDEx.pdf (presentation)

[Vreugde, 2003] Blaise Survey Generator, Carlo J.C. Vreugde, Jacques J.M.J. de Groot, Christiaan van 't
Hoft, VNG, SGBO, StimulansZ, of the Netherlands, in: Proceedings of the 8th International Blaise Users
Conference, Copenhagen 2003, https://blaiseusers.org/2003/papers/Blaise_survey_generator.pdf

[Wensing et al., 2007] Exploration of Blaise Instrument Generation from Metadata, Fred Wensing and
Juanita Pettit; Australian Bureau of Statistics, Australia, in: Proceedings of the 11th International Blaise
Users Conference, Annapolis 2007, https://blaiseusers.org/2007/papers/F3%20-
%20Exploration%20of%20Blaise%20Instrument%20Generation%20from%20Metadata.pdf

> back to Table of Contents

1

Speedy Incentives from Blaise 5 Instruments
Emily Caron, Jerry Copperthwaite, and Rhymney Weidner, RTI International

1. Abstract
One of the popular ways to encourage respondents to complete a survey is to provide them with a
monetary incentive. Blaise 5 does not have a direct way to instantly send incentives to respondents, but by
leveraging existing Blaise functionality and PowerShell scripts—along with a separate, specially
developed system—we were able to implement “instant” incentives for a recent project. The respondent
was able to receive a digital incentive within minutes of completing the survey. This paper will examine
features utilized in Blaise 5 and provide a brief explanation of the accompanying scripts and other pieces
involved that made this feature possible.

2. Introduction
One of the best ways to encourage respondent participation in a survey is to provide a monetary incentive
for completing it. In the past, these incentives were provided by RTI either via a mailed check or an e-gift
card. E-incentives were processed by overnight batch jobs, which resulted in a delay of roughly 24 hours.
Mailed incentives were slower and took up to a few weeks to reach respondents.

Recently, RTI endeavored to implement a “speedy” incentives process, which enabled respondents to
receive an incentive via email or text within minutes of completing the survey if one of those digital
delivery methods was selected. These incentives came in the form of an e-gift card that could be retrieved
via a link included in the email or text (as selected by the respondent). This paper will cover the
specialized process developed to trigger these incentives, focusing on the Blaise 5 features utilized to
hook into the backend processes that take care of delivering the incentives. We will also outline some of
the challenges encountered and lessons learned while implementing this process.

3. High-Level Overview of the Speedy Incentives Process
Figure 3a. An Overview of the Speedy Incentives Process Flow

> back to Table of Contents

2

The processes in the Figure3a diagram flow from the FIPS Moderate (FIPS Mod) side of the firewall to
the FIPS Low side. Our FIPS Mod network is a standalone, dedicated network that employs a highly
restrictive set of security controls and requires multifactor authentication. This is where the Blaise-
collected survey data are stored. The starting point of the speedy incentives process is the Blaise survey,
which contains logic to write incentive metadata to a SQL database table. The next process is a Listener
Application that runs in the background in the FIPS Mod network and contains a timer to query the SQL
database table for new incentive records inserted via the Blaise survey.

If a new record is found, an insert function of a web service located in the FIPS Low network is called to
load the incentive metadata to a corresponding SQL database table. Next is another Listener Application
that runs in the background in FIPS Low. This process contains a timer to query the SQL database table
for new incentive records inserted via the web service. If a new record is found there, the process calls an
incentive API to purchase a new incentive, which is then sent to the respondent via email or text.

A Simple Mail Transfer Protocol application is used for building and sending the email messages, and an
in-house ARTEMIS application builds and sends the text messages. The email and text messages contain
a link for respondents to claim their incentive via Tango®, where they have a number of choices for
“cashing in” their incentive amount.

Figure 3b. Example Screen for Redeeming Incentives

> back to Table of Contents

3

4. Blaise Features Utilized to Trigger Incentives
The first implementation of the speedy incentives process triggered by a Blaise survey was in a survey
designed in version 5.12.8. Triggering the incentive required a specialized template, a call to a
PowerShell script from an actions setup function, and a call to a stored procedure from the PowerShell
script.

While developing the templates for the incentive process, we had to determine at what point we wanted to
send the incentive and how we could prevent duplicate incentive attempts. Even though the backend
processes contained checks to prevent duplicates, we wanted to avoid unnecessarily triggering any of
these from Blaise in the first place. First, it was decided that the incentive should be sent as soon as the
respondent completed the screens containing incentive questions. This location was towards the end of
the survey, although it was not required that respondents fully complete the survey to receive the
incentive. The respondent could elect to receive their incentive either via email or text (digital delivery) to
be eligible for a “speedy” type of incentive. Other options not involving this new process included
receiving the incentive via mail or choosing not to receive any incentive.

Figure 4a. Incentive Delivery Options

After selecting one of the digital incentive methods, the respondent is routed to a screen where their email
address or cell phone number is collected, depending on which delivery mode was selected. This is
followed by the appropriate screen routing to confirm the email or cell phone number, which also serves
as verification of consent for this type of contact. On these confirmation screens, a special
“SpeedyIncentive” template is used to trigger the actions setup process from the
OnTryLeavePageForward event. On the screen immediately following the confirmation screens, the
“Back” button is removed to prevent respondents from backing up and retriggering the actions setup.

Figure 4b. The SpeedyIncentive Process is Triggered in the “OnTryLeavePageForward” Event of a Special Master Page
Template

> back to Table of Contents

4

Figure 4c. Confirmation of Email Address After Email Incentive Is Selected; When the Respondent Selects “Yes” and
Clicks “Next,” the SpeedyIncentive Process Is Triggered

The speedy incentive template is automatically assigned to appropriate fields using an applicability
condition on the template. Each field that should trigger a speedy incentive has “SpeedyIncentive” in the
Templates role.

Figure 4d. This Applicability Condition Ensures That All Fields with “SpeedyIncentive” Included in the Templates Role
Are Assigned the Speedy Incentive Template

The “SpeedyIncentive” process is in the “Actions Setup” file defined in the project settings and mapped
using Blaise 5’s “Mappings Management” screen. The process pulls the relevant information from the
active survey using the SURVEYRECORD file definition. This information is then passed to the
PowerShell scripts, as shown in Figure 4e.

> back to Table of Contents

5

Figure 4e. Code in the Actions Setup Process That Calls the PowerShell Scripts

Figure 4f. The Process Must Be Mapped to a Function Declaration in the Resource Database to Be Called from the
Appropriate Template

The PowerShell script then makes the final call to the stored procedure that will insert an entry to a
specific SQL database in the FIPS Mod network. The information added to the table includes case ID
with attached language indicator (surveys conducted in multiple languages aren’t an issue), confirmed
email or cell phone number, a placeholder value for the full name (since the resulting text message or
email does not include the respondent’s name in this case), the Blaise GUID (for identification purposes
since the table is shared with other surveys), and the amount of the incentive to be sent. The Listener
Application will pick up new incentive information from this SQL table and kick off the rest of the
process discussed in Section 3, “High-Level Overview of the Speedy Incentives Process.”

5. Challenges and Lessons Learned
5.1 Initial Setup and Testing Challenges

Initial challenges in the FIPS Low environment where we conducted testing included getting an
appropriate PowerShell script programmed to trigger the insert into the stored procedure. We iterated
through a number of test attempts while tweaking the call, both to adjust the syntax in general and to
account for passing new parameters when new information was found to be needed in the incentives
database—namely, for language indicator and GUID.

We also had trouble with the mapping of the actions setup function. Blaise 5 appeared to drop the
mappings frequently, so we consistently checked to make sure it was still mapped correctly and remapped
when needed.

> back to Table of Contents

6

After moving programs into the FIPS Mod network, the first set of tests for our new process was
unsuccessful. Once we had confirmed everything in Blaise was running as expected as part of
troubleshooting, we tested the PowerShell script by running it manually. Attempts to run the PowerShell
script manually resulted in the error shown in Figure 5a. The firewall required modification to allow
communication between the server hosting the Blaise instrument and the server hosting the SQL Server.
After proper ports were opened, the process was successful.

Figure 5a. The Error Message Displayed When Initially Running the PowerShell Script from the Webserver to Insert into
the SQL Table for Speedy Incentives

5.2 The Importance of Thoroughly Testing All Layout Sets

One of the most important lessons learned from implementing the speedy incentive process is that all
layout sets need to be thoroughly tested for speedy incentive functionality. Our process relied on the
PowerShell script being triggered by a function associated with a specific template. Without that template,
the entire house of cards would collapse, and the speedy incentives wouldn’t go out.

Initial instrument testing was heavily focused on the large layout set due to 508-compliance needs and
testing out special text and functionality related to CATI mode. The small layout set was tested, but fewer
test cases went through the small layout set, and unfortunately, it appeared most testers did not select
digital incentive modes. Shortly after launch, it was discovered that surveys completed in the small layout
set were not receiving digital incentives. While implementing the speedy incentive template in the small
layout set, there was an issue with hierarchy that originally went unnoticed. The speedy incentive
template was below the default Master Page template, which led to screens that should have had the
speedy incentive template receiving the default Master Page template instead. Incentives are not triggered
on the default Master Page template, which meant these small layout set cases were missing a key step in
the speedy incentive process.

Figure 5b. On the Left Is an Image of the Incorrect Hierarchy for Master Page Templates; This Hierarchy Allowed the
Assignment of the “Default” Master Page Template Prior to the Applicability Condition on the SpeedyIncentive
Template Being Considered; The Image on the Right Shows the Correct Hierarchy for the Master Page Templates

> back to Table of Contents

7

As soon as this issue was discovered, an update was released with this slight, but very important, error
correction. Yet another lesson for future development: make sure to double check the assigned template
for key fields when functionality is dependent on the correct template.

Once the error was corrected, queries were run against the survey data and speedy incentives dataset to
pinpoint cases that had elected to receive a speedy incentive but had no entry in the speedy incentives
table. We manually triggered incentives for these cases by constructing appropriate calls to the
PowerShell script to insert the data into the speedy incentives table. The queries used to find cases
missing from the incentives table became part of future, regular quality check routines to ensure that the
speedy incentives process continued to work as expected once the small layout set was fixed.

Another lesson learned from this mistake is that the number of respondents using mobile devices to
complete the survey was far higher than expected. Based on the number of missing incentives, over 50%
of cases were being completed on a mobile/small screen device. Future surveys should include an equal
amount of testing between the large and small layout sets.

5.3 Consider Carefully When Events Are Executed

After the correction was made for the small layout sets not receiving incentives, another issue was
discovered. When respondents attempted to move forward without selecting a response on the email
address or cell phone number confirmation screens, a double entry was made in the speedy incentives
table. This issue stemmed from a misunderstanding of where the OnTryLeavePageForward event was
called. It was assumed that this event was not called until just before the page was left, but it was also
triggering as soon as the “Next” button was clicked. This resulted in the speedy incentives process being
called twice in situations when an error occurred on the page. An entry for the case was inserted when the
error was triggered, and then inserted a second time when the respondent corrected the issue and was able
to move forward.

Fortunately, the backend processes ensured that only one incentive was sent per case in these situations.
To correct this issue, another build was released with a conditional statement checking to make sure no
errors existed on the page prior to calling the speedy incentives process. The corrected
OnTryLeavePageForward event is shown in Figure 4b. The conditional statement was added to make sure
the SpeedyIncentive process was not triggered until any errors on the page got resolved.

6. Future Uses and Potential Enhancements
The backend processes involved (refer to Section 3) were set up to handle receiving entries into the
speedy incentives database not only from Blaise software, but also from other survey data collection
systems utilized by RTI International, which makes the process flexible enough to serve a wide array of
projects.

We foresee future projects making use of this speedy incentive process, as it adds a new layer to the
methodologies behind incentives by rewarding the respondent with a form of immediate gratification. Our
survey included a household screener component followed by a selected respondent survey, so we felt
getting the incentive into the hands of the screener participant ASAP would be highly encouraging for
participation in the survey component.

Situations where sending other timely digital communications to respondents during or immediately after
their survey would be useful could also be considered for this process. A couple of examples: (1) specific

> back to Table of Contents

8

reminders to the respondent or someone in their household for completing additional surveys; (2) handing
another portion of the survey off to a coworker as part of a business survey where different sections are
completed by various individuals. As clients approach us with challenging criteria for complex surveys,
we will have this process available in our toolbox.

7. Conclusion
We are continuing to monitor this new speedy incentives feature and will be analyzing results of its use.
For example, it will be interesting to review survey component participation rates for cases where the
screener respondent opted for a digital incentive vs. a mailed incentive or no incentive. Lessons we
learned will surely be applied to future projects that implement this feature.

> back to Table of Contents

1

The Many Faces of F1
Siu Chong Wan and Sheba Ephraim, Westat

Presenter: Siu Chong Wan

1. Abstract
The display of help text to interviewers or respondents, depending on the mode of collection, is an
essential feature in Blaise. While we used function keys (F1) for online help in Blaise 4, we have
additional options in Blaise 5.

In addition, we can use the same techniques to display other materials, like showcards, that we often need
in interviewer-administered surveys.

However, what we are going to explore here is not limited to interviewer-administered surveys.

This paper discusses our use of different triggers in Blaise 5 and the types of actions that support the
needs of displaying supplementary survey materials.

2. Triggers
There are a variety of ways for the users to access the help text. While traditionally trained interviewers
might still favor keyboard shortcuts, the growing availability of touchscreen devices makes buttons and
hyperlinks more attractive. We will discuss the triggers that we have tried so far.

2.1 Keyboard Shortcuts
Be it the F1 key again, or any other function key or shortcut key, we can use template events to define
actions that display help text.

This is an example of the “OnF1” event defined in a Master Page Template.

2.2 Menu Items
Using a menu control, we can create menu item events to define actions that display help text. In addition,
we can use the shortcut property in a menu item to define an accelerator key that works just like the
abovementioned keyboard shortcuts.

> back to Table of Contents

2

This is an example of the F1 key defined in the shortcut property of a menu item.

2.3 Buttons
Buttons might be one of the most versatile ways to show help text. Depending on what kind of template
the button resides in, we can display help text associated with a page, a field, a response category, or even
a table column header.

This is an example of a button shown as a blue “?” that triggers help text in a Field Pane Template.

2.4 Hyperlink Tag
The hyperlink tag supports the OnClick attribute, where we can define actions that display help text. This
can be defined in the field text alone in the FIELDS section of the data model without defining anything
in the resource database.

> back to Table of Contents

3

This is an example of a hyperlink defined in the question text.

3. Actions
There are different actions to display extra reading materials. Here, we focus on ways to open local files,
web pages, and simply extra field text in the current page. While local files can be accessed by the
StartLocalProcess action, web pages can be accessed by the GotoUri action. If we want to remain on the
current page the whole time, we simply hide and show field text.

3.1 StartLocalProcess Action
The StartLocalProcess action introduced in Blaise 5.13 provides a lot of possibility in Blaise 5. As long as
we can find a local program that can display additional materials, we can use it. Here are a few examples:

To display HTML-Help with topic identifier:

{Action StartLocalProcess('C:\\Windows\\hh.exe',
'mk:@MSITStore:C:\\Documents\\Help.chm::/RespondentHelp.htm', '', True, Normal)}

To display a JPEG file in MS Edge:

{Action StartLocalProcess('C:\\Program Files (x86)\\Microsoft\\Edge\\Application\\msedge.exe','--
app="C:\\Documents\\ English_2022_PP_16_593x730.jpg"', '', True, Normal)}

To display a PDF file in MS Edge at a particular page:

{Action StartLocalProcess('C:\\Program Files (x86)\\Microsoft\\Edge\\Application\\msedge.exe','--
app="C:\\Documents\\Help\\LayoutDesigner_Tutorial_PartI.pdf#page=5"', '', True,
Normal)}

3.2 GotoUri Action
The GotoUri action is definitely the way to go when we need to access help text on a web page. As long
as the respondent has access to the internet, we can display anything from a web source. On the other
hand, it can also display local files. Here are a couple examples:

To go to a web page:

{Action GotoUri('https://www.westat.com/about-westat/')}

> back to Table of Contents

4

To go to a local file:

{Action GotoUri('C:\\Documents\\Help\\HTM\\RespondentHelp.htm')}

The advantage of maintaining the material in a web source is that the updates to the web source can be
available immediately. This is particularly good for time-sensitive information. However, the requirement
of internet access could also be a weakness because we do not always have internet access in interviewer-
administered surveys. In other words, the lack of internet access is almost assumed in interviewer-
administered surveys.

3.3 ToggleVisibility Action
One thing we often try to avoid in web surveys is popups. Since we cannot control web respondents’
browsers and cannot disable popup blockers, we usually try to display help text in the current page. In this
case, we do not start any local process or go to any URI. We simply create a text role for the help text and
use the ToggleVisibility action to show and hide the role text.

The predefined text roles “Help” and “ToolTip” are handy for this purpose, but additional text roles can
be defined for additional text displaying needs.

In the default Blaise 5 resource database, a “Help” text role is already defined to work with the
“helpButton” in the Vertical Field Pane Template to show/hide the help text.

<Button Name="helpButton" ... OnClick="{Action
ToggleVisibility('Help')}">

4. Examples
We will discuss in more detail how things work in a few examples.

4.1 StartLocalProcess Action Working with a Menu Bar Item
We first define the text role “HelpFile” in both the resource database and the data model for the name of
the file that stores the help text associated with the field. This will serve as the topic identifier in HTML-
Help.

> back to Table of Contents

5

Then we define a menu item in the Master Page Template.

<MenuItem Text="Help F1" Shortcut="F1" Visibility="{Expression IF
Page.ActiveField.RoleTextExists('HelpFile') = True THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action Conditional({Expression
Page.ActiveField.RoleTextExists('HelpFile') = True},{Action
StartLocalProcess('C:\\Windows\\hh.exe',{Expression
'mk:@MSITStore:C:\\Documents\\Help.chm::/' +
Page.ActiveField.GetRoleText('HelpFile') +
'.htm'},'',True,Normal)},'')}" />

We use “F1” in its shortcut property so that both the menu bar and the F1 key work the same way.

We control its visibility based on whether the active field has “HelpFile” role text defined.

In the OnClick event, we use the StartLocalProcess action to run the local program “hh.exe” to open the
HTML-Help file, “Help.chm,” at the page defined in the “HelpFile” role text.

In this example, we define the HelpFile role text as “LIVEUSHelp” so that the StartLocalProcess will run
the local hh.exe program to open the topic identifier “LIVEUSHelp” in the C:\Documents\ Help.chm file.

As a result, the Q1 page shows “Help F1” on the menu bar.

By either clicking the menu bar item “Help F1” or pressing the F1 key, the help window pops up with the
definition of living within or outside the U.S.

> back to Table of Contents

6

4.2 StartLocalProcess Action Working with a Keyboard Shortcut
Continuing with what we built above, we add the text role “HelpPage” for the page we want to show in a
PDF file.

In this example, we use page number 30.

We add the shortcut key F3 to the Vertical Field Pane Template.

<Shortcut Key="F3" OnExecute="{Action Conditional({Expression
Field.RoleTextExists('HelpPage') = True},{Action
StartLocalProcess('C:\\Program Files
(x86)\\Microsoft\\Edge\\Application\\msedge.exe',{Expression '--
app="C:\\Documents\\Help\\ Blaise.pdf#page=' +
Page.ActiveField.GetRoleText('HelpPage') +
'"'},'',True,Normal)},'')}" />

This time, in the OnF3 event, we use the StartLocalProcess action to run the local program “msedge.exe”
to open a PDF file in MS Edge at the page defined in the “HelpPage” role text.

In this example, we are showing the Blaise 5 Manual file, Blaise.pdf.

As a result, this page does not need to display any buttons or the menu bar.

> back to Table of Contents

7

When we press F3, MS Edge pops up to display page 30 of the Blaise 5 Manual.

4.3 Button to Toggle Role Text Visibility
In web surveys, where we cannot start a local process and in general avoid popup windows, role text fits
the purpose of showing help text. We usually use a button to toggle the visibility of the role text so that
the user can choose to show or hide the role text.

> back to Table of Contents

8

In the resource database, we define a “helpButton” in the Field Pane Template where its visibility is
determined by whether the field’s role text “HelpText” exists. Its OnClick event simply shows or hides
the HelpText.

<Button Name="helpButton" Visibility="{Expression IF
LEN(Field.GetRoleText('HelpText')) = 0 THEN 'Hidden' ELSE 'Visible'
ENDIF}" HorizontalAlignment="Center" Background="{Style
HelpButtonBackGround}" Margin="{Style HelpButtonMargin}" Width="{Style
HelpButtonWidth}" Height="25" ScreenReaderText="Help"
ToolTipFontName="ToolTip" OnMouseDown="{Action
SetControlProperty('helpButton','Background','Brush','{Style
ButtonBackgroundSelected}')}" OnMouseUp="{Action
SetControlProperty('helpButton','Background','Brush','{Style
HelpButtonBackGround}')}" Text="?" FontName="HelpButton"
ScreenReaderTextSource="Literal" BorderWidth="{Style
HelpButtonBorderWidth}" BorderColor="{Style HelpButtonBorderColor}"
CornerRadius="{Style HelpButtonCornerRadius}" OnClick="{Action
ToggleVisibility('Help')}">

> back to Table of Contents

9

In the data model, we define the role text “HelpText” for the field.

As a result, we have a blue “?” button to the left of the question text.

When the blue “?” button is clicked, help text is displayed below the question text.

This is not limited to the field level. For instance, we can add the same help button and field text in a
category template, and then add role text to the type library so that the help text becomes answer category
level.

> back to Table of Contents

10

Although this is usually the way we show help text in web surveys, this can be applied to interviewer-
administered surveys in the same way.

4.4 Hyperlink in Field Text to Display Showcard
In face-to-face surveys, showcards are often used to present information to respondents. Either we choose
to present the showcards on our devices, or simply use that as the means for the interviewers to verify the
correct showcard. There is value in having the ability to display the showcards along with the questions
on the screen during the survey.

This time, we will do everything in the field text and not bother with the resource database.

> back to Table of Contents

11

Clicking the hyperlink triggers the StartLocalProcess action to run the local program “msedge.exe” to
open a JPEG file in MS Edge.

5. Conclusions
We have seen many different ways to display supplementary materials.

If the needs are limited (e.g., only help text for a couple questions), we can easily program that in the field
text without extra settings in the resource database.

However, for large surveys that need to show a lot of help text or showcards, maintaining all the external
texts and images outside of Blaise would be more manageable. In that case, setting up text roles, events,
and actions in the resource database up front would be a more efficient way to deal with it. For instance,
we only need to use role text to determine the file name or page number in the field definition, and the
resource database can take care of the rest.

It is worth noting that, as helpful as it is, the StartLocalProcess action works only in Windows, not in
browsers.

> back to Table of Contents

12

On the other hand, in web surveys, the rule of thumb would still be avoiding popups, whether we can start
a local process or not. In this case, using field text to show help text is more desirable. It should be noted
that survey designers might need to beware of too much help text displayed on the page that becomes
more of a distraction than a help.

> back to Table of Contents

1

Creating a Respondent Self-Scheduling Interface Using Blaise 5
Andrew D. Piskorowski, Peter Sparks, and Andrew L. Hupp, University of Michigan

1. Background

With refusals increasing and contact rates decreasing, researchers are having to expend more effort to
reach people than ever before. When an interviewer makes contact, some portion of that time is spent
finding a time when the person actually has the time required for the survey request. One possible way to
minimize that effort is to have the person self-schedule a time that is convenient for them. Self-scheduling
is common in daily life, for things like salon appointments, restaurant reservations, and automobile
service appointments, so why not allow, at least for those who want to, an opportunity to set an
appointment without involving an interviewer?

2. Scheduling System

The University of Michigan has created a scheduling system that allows a person to schedule an
appointment time that is convenient for them. The system has three main components:

1. An appointment configuration settings interface that allows the project to define parameters that
are used to calculate appointment slots,

2. A logon portal that controls access to the self-scheduling interface (survey), and
3. A Blaise datamodel used as the self-scheduling interface.

2.1 Appointment Configuration Settings

There are 12 different appointment configuration settings a project defines (see Figure 1). The scheduling
system uses the defined parameters to calculate available appointment slots for the respondent to select
from.

Figure 1. Appointment Configuration Settings

> back to Table of Contents

2

2.1.1 Flexible Time Slot Generation

The program initiates its operation by generating potential time slots based on the defined parameters.
These parameters include the intervals (e.g., every 15, 30, 45, 60 minutes) displayed to the respondent
specified by [Appointment Intervals], the daily start and end times of availability (specified as [Open
Hours Start] and [Open Hours End]), and the allowable scheduling period defined by [Start Date] and
[End Date].

2.1.2 Flexible Time Slot Generation

Each time interval generated is assigned a maximum number of interview slots, as specified by [Max Iw
Slots]. This allocation accounts for the anticipated capacity for interviews within those intervals, ensuring
efficient resource utilization.

2.1.3 Accounting for Existing Appointments

To provide an accurate representation of available slots, the program deducts the number of current
appointments from the maximum slots available by matching interval time slots and all time slots within
the next [Appointment Length] minutes. This mechanism guarantees that only genuinely open slots are
presented to users, factoring in the expected duration of each survey.

2.1.4 Dynamic Date Range Selection

The program next dynamically determines the available date range for scheduling appointments. This
range starts with a delay, as defined by [Schedule Delay Value] and [Schedule Delay Time]. For example,
if today is October 1 and the delay values are [2] and [days], the first available time slots presented to
users would begin on October 3. The program also limits the scheduling horizon by considering
[Schedule Window Value] and [Schedule Window Time], ensuring that respondents can’t schedule
appointments too far in advance. For instance, if those values are [2] and [months] with the delay values
above, the date range of dates available for time slots would be from October 3 to December 3. Different
unit types are available, including days, weeks, and months.

2.1.5 Blackout Date Filtering

Lastly, the program ensures that any dates defined as [Black Out Dates] are filtered out from the available
options, preventing respondents from scheduling appointments on these restricted dates. Additionally, it
enforces all dates to fall within the project’s specified [Start Date] and [End Date], maintaining alignment
with project timelines.

Overall, these configuration settings, which are customizable for each project, empower project leaders to
adapt and respond to changing interviewer availability and organizational needs. This systematic
approach not only streamlines the scheduling process, but also enhances the user experience by providing
a comprehensive and tailored set of options for survey completion.

3. Logon Portal

The portal is a .NET web application that collects the user’s login credentials, performs checks, retrieves

> back to Table of Contents

3

current case status from the management system, and launches the Blaise self-scheduling survey if
appropriate. It has been implemented in both English and Spanish (see Figure 2).

The usual method of entering through the portal is via a fully qualified URL. That is, the full web address
and parameters are supplied. For example,

https://[TestingSite]/[SS_Survey]/logon.aspx?l=[loginID]&p=[pin]5&iwerid=[iwerid]&S=[SessionConta
ct]

The portal has been designed so the respondent is taken to the logon site with the login credentials passed
from the URL, but the respondent needs to manually click/tap the “Start” button in order to launch the
self-scheduling survey.

After the user has entered their login credentials, or has had these credentials and other parameters
automatically supplied via an email, QR code, or other means, the portal checks to see if the browser is
supported (i.e., not too old) and that cookies and JavaScript have been enabled. If these checks pass, then
the portal passes the supplied credentials to an authentication endpoint (that communicates with the
management system) and receives back a status and the primary key (if appropriate) for the attempt:

• Authorized (login credentials are okay, and the self-scheduling survey is active and available)
• NotAuthenticated (wrong login credentials)
• Paused/Locked/Stopped/Canceled (self-scheduling survey is not available)
• Expired/Closed (study has been closed and is not available)
• NotAvailable (study is not available)

Figure 2. Scheduling System Logon Portal

> back to Table of Contents

4

The portal page also checks for concurrent sessions of the self-scheduling survey and, if found, will deny
the later login attempt from accessing the self-scheduling survey (a wait message is displayed to try again
later). The portal will attempt to clear any existing Blaise session using the returned primary key before
starting the self-scheduling survey with several parameters passed into the survey (such as the project ID,
a web server identifier, mode, and others).

4. Blaise Datamodel

4.1 Alien Procedure Calls

The Blaise data model communicates with the management system and with the scheduling database via
alien procedure calls to a Windows service installed on the web server (see the Blaise Fibonacci sample
program for an example of using an alien procedure). Implemented calls include:

4.1.1 Scheduling Database Specific

• procSchedDateRange: Start and end date for the study, days of week available, and enabled and
disabled dates. This information had originally been used with a date control, but in the current
implementation, the dates are displayed in a drop-down list. The dates are still filtered by the

> back to Table of Contents

5

service configuration settings. A study-specific rule to restrict appointment start dates by three
days from the current date has been implemented in the data model.

• procSchedTimeSlots: Retrieves all the time slots available for a selected date. This is populated to
the drop-down list of times.

4.1.2 Management System Specific

• procGetApptInfo: Whether this is a prior appointment, along with date, time, time zone, and
appointment ID of the appointment.

• procSetNewAppt: Set a new appointment with the management system using start date/time, end
date/time, time zone, contact phone, session contact method, alternative contact phone, and
appointment ID.

• procRescheduleApt: Reschedule an existing appointment with the management system using start
date/time, end date/time, time zone, contact phone, session contact method, alternative contact
phone, and appointment ID.

• procCancelAppt: Cancel an existing appointment using appointment ID and session contact
method.

• procRecordContact: Write to the management system the type of appointment contact: canceled,
scheduled, or rescheduled, with the parameters of start date/time, end date/time, time zone,
contact phone, session contact method, alternative contact phone, and appointment ID.

• procGetContactInfo: Get the first and last name, email, email type [confirmation/cancellation],
phone, and phone type [confirmation/cancellation].

• procGetLanguage: Get the initial current language to use for the appointment (English or
Spanish).

• procSetContactInfo: Write out to the management system the first and last name, email, email
type [confirmation/cancellation], phone, and phone type [confirmation/cancellation].

4.1.2 Service Specific

• getDateTime: Converts date and time with time zone into a single string representation of the

time.

4.2 Windows Service

A Windows service, SS_Svc.exe, was developed to reside on the web server in the Windows services and
to communicate with Blaise via the alien procedure method. A port was “opened” to enable these
communications to the Blaise self-scheduling survey. The service then sends/retrieves information from
the survey, the management system, and the database endpoint. It transforms raw data from any of the
three sources to appropriate formats; sets up secure communications; and handles authentication, logins,
and so forth behind the scenes.

In prior releases, the service had communicated directly with the database via stored procedures. An even
earlier implementation had no external database with dates and time slots, but just a few settings that were
read from the configuration file: start/end dates, start/end shift times, daily schedule, enabled dates,

> back to Table of Contents

6

disabled dates, and interviewer-assisted flags. Appointment information was still retrieved and stored
using the management system.

4.3 Respondent Interface

The Blaise data model serves as the interface for the respondent to enter their appointment. The self-
scheduling survey uses just five pages: three are for setting up a new/rescheduled appointment, one is for
choosing to cancel/reschedule an appointment, and one is for canceling.

4.3.1 Scheduling an Appointment

If a respondent is scheduling an appointment, they will see the first of three appointment entry screens.
The respondent selects the time zone they want, and then the date and time controls are populated with
the available dates and times adjusted by the time zone difference between the call center (in EST) and
the respondent’s time zone. If there is a big time difference between time zones, then either the starting
time will be later than the call center beginning shift time or the ending time will likely be in the
afternoon. In either situation, the appointments made by the respondent will fall somewhere within the
call center hours of operation.

Time zones will adjust the date/time drop-down lists shown to the respondent. In addition, the time zone
information collected has to be transformed between standard time zone names and time zones as they are
stored in the management system. As a result, a time zone external lookup database was created to handle
the name translations, as well as retrieve the appropriate time zone offset the management system expects.

Navigation between pages is accomplished by clicking the section buttons (see Figure 3). These have
been made extra wide so they appear as a button bar. Respondents are free to move between the first two
screens (Choose Your Interview Date and Time and Enter Your Contact Information) and make changes.

Once the respondent has selected the time zone, date, and time of their appointment and has navigated to
the contact information section, a summary of the appointment date and time is displayed in the first
section. In the second section (see Figure 4), the respondent is asked for their contact name (first and last),
email, and phone number, and to provide any relevant notes for things like an international phone number
or the need to be called at a different number than the one entered in the phone field, etc.

> back to Table of Contents

7

Figure 3. Section Buttons

> back to Table of Contents

8

Figure 4. Contact Information Screen

Once the respondent navigates to the confirmation screen, the system checks to make sure there is still an
appointment slot available. If there is, the respondent is presented with the confirmation screen (see
Figure 5). If there are no slots available, the respondent is asked to select a different date or time.

Figure 5. Confirmation Screen

> back to Table of Contents

9

Successful appointments decrement the number of slots available for a date/time, and once that count is
less than one, it will no longer be available in this interface. Each time the respondent changes time zone,
date, or time on this screen, the service is contacted again to refresh the values in an effort to avoid
overbooking appointments.

4.3.2 Rescheduling an Appointment

When a respondent already has a scheduled appointment, they have an option to reschedule (or cancel)
that appointment date/time (see Figure 6). When an appointment is being rescheduled, the prior
appointment is automatically canceled, and the self-scheduling survey collects the new appointment
information. The information is collected in exactly the same way as a new appointment.

Figure 6. Reschedule/Cancel Screen

For rescheduled appointments, the self-scheduling survey will create a new appointment ID (the letter
“A” + primary key) and launch the self-scheduling survey again. The management system needs to know
the difference between a newly scheduled appointment and one that has been rescheduled, so this
mechanism was chosen to pass that information, and then start with a fresh survey to gather the new
appointment.

4.3.3 Canceling an Appointment

A simple verification screen is displayed to show the appointment has been canceled (see Figure 7). In
this case, the appointment is marked as canceled, and the number of available slots for this date/time is
incremented in the database.

Figure 7. Reschedule/Cancel Screen

> back to Table of Contents

10

5. Future Work

The logon portal needs to be changed to use .NET’s resource files, .resx, for language-specific texts.
Currently, the portal switches between two logon pages. This means there is code duplication, a small
delay as the page loads, and some extra programming required to transfer parameters between the
pages. By using .resx files, there would be one source page with no code duplication, no delay between
language switches, and easier maintenance of texts.

The endpoints in the Windows service have been kept as work progressed and are currently backward
compatible with all prior versions of the self-scheduling survey but will be removed to keep the code
clean.

> back to Table of Contents

1

Large Scale Lookups, from an End-User and a Programmer
Perspective
Peter Stegehuis and Naxin Zheng, Westat

Presenter: Peter Stegehuis

1. Introduction
With many lookups in a CAPI instrument, the contents of the lookup database are typically the same for
every survey respondent. When we ask respondents what prescribed medicines they use, for example, the
list we use in the background for their search is the same for all respondents. However, when we want
them to select a physician or medical professional in a lookup search, it doesn’t make sense to present all
possible selections from the entire country to everyone, as the lookup would be too large and, even more
importantly, it would end up showing many irrelevant results to the end user, making it too hard to find
the desired result. This paper discusses ways to make medical provider lookups relevant from an end-user
perspective and manageable from a programming and file management viewpoint.

2. The Challenge
We are asking respondents for medical information, including doctor and hospital visits, over the period
since the previous interview in the panel survey. Even with the help of records at hand, it can be difficult
for respondents to recall this information for all household members, especially if the reference period is,
for instance, six months long. There is also a separate follow-up survey with the providers, to get more
accurate data on the exact procedures and cost. In order for providers to be able disclose this data, we ask
household members to sign so-called forms to authorize data collection from providers. It is therefore
crucial to collect accurate data on the providers and their contact information.

3. What is Needed?
So, rather than letting the interviewer just type provider names, addresses, and phone numbers as
remembered by the respondent, we want to have them select a record from a lookup that has accurate
medical provider information.

In order to implement this within the interview program, we need to have the following elements in place:

• A good resource for provider records
• A mechanism for a good lookup
• Meaningful, localized lookup data files
• A user-friendly presentation of lookup search results

We will describe these elements in the following sections.

4. Resource for Provider Data Records
There are different data sets of medical providers in the entire US available, some publicly and some for
an annual fee. We have looked at a number of them and found that the most comprehensive data set
seems to be the National Provider Index (NPI).

There is a strong incentive for medical providers to sign up and get a unique NPI ID: any provider—
person or facility—who wants to ever bill a federal entity like Medicare or Medicaid needs to have an

> back to Table of Contents

2

NPI ID. This makes the NPI a more comprehensive list of providers than others, a crucial distinction for
our purpose.

It is far from a perfect list however: there is no incentive for providers to delist when a doctor retires or a
medical facility shuts down or moves. This means that the list keeps growing year over year, and many
entries are no longer relevant. It also means that the lookup search mechanism becomes of even greater
importance if the interviewer is to find the correct medical provider in an enormous mix of useful and
useless records.

5. The Search Mechanism
To be actually useful during an already long interview with possibly many provider searches, any search
mechanism to be used for this search has to be fast and powerful, serving up search results almost
instantaneously after an interviewer types in a search string. It also needs to be somewhat forgiving of
typos in name or address of a provider as given by the respondent and allow for easy searches on name,
phone number, and/or address.

Before we switched to Blaise 4.8, we did this search in SQL Server, using a “LIKE” search with
wildcards. The speed of a search was adequate, but that mechanism was not able to deal with typos very
well, especially if they were at the start of search words. It also needed separate searches for name,
address, and phone number.

The switch to Blaise 4.8 and trigram lookups meant a big improvement in the success rate of provider
searches. Because of the trigrams—three letter snippets—this search mechanism is much less influenced
by a typo, and the way Blaise indexes those trigrams means the search results come up extremely fast.
With a carefully constructed ‘search string’ for each record in the lookup data file, we can also assure that
the interviewer can choose to enter parts of the provider name, address, phone number, or some
combination of these without having to specify that in any way by designating a search category
beforehand. We have seen much better outcomes since we switched, with a much higher percentage of
searches finding a match, as opposed to adding verbatim provider info after an unsuccessful search.

5.1 Creating Localized Lookup Data Files
One way to try to include relevant providers for a specific interview is to use the respondent’s state:
include all providers within that state and exclude all others. The problem with that approach is that
people will cross state lines to get medical services, and for many people near state lines, that may well be
their preferred option. The same disadvantage goes for the counties within states.

Instead, we wanted to ensure that the respondent’s address was more in the center of the area that would
be covered by the lookup file. So, we started off with the respondent’s zip code (for non-US readers,
that’s a postal code, much smaller than states or counties). Just including providers within that zip code
would be too limiting, so we wanted to include all the providers within a wider circle around the
respondent’s zip code.

At the outset, we created circles with a radius of 100 miles around the zip code’s centroid (you can think
of that as the center or average location in the zip code area). The list of zip codes in the US, and their
centroid coordinates, is freely available. So, for each zip code, we calculated a list of zip codes that would
fit within the circle with radius of 100 miles by calculating the distance from one centroid to another.

As an aside, Manipula is known for being very fast, especially in handling large text files. We had to
double check the results when calculating the distance from zip code 20850 to all others—writing two

> back to Table of Contents

3

output files and sorting the first output file took all of one second. Figure 1 is a screenshot with that result,
with start time and end time near the top.

Figure 1. 42,000 Distance Calculations in One Second

Unfortunately for us, creating Blaise trigram lookup files takes a lot longer—not surprising when thinking
about the work needed for creating, indexing, and managing the trigram index file.

The next issue was when and where to create these lookup files, and how to get them on interviewer
laptops. There are more than 42,000 zip codes in the US and creating and storing them all takes up 20 TB
(or 2 TB zipped), which is, of course, way too much data for storing on an interviewer’s laptop. We can’t
create them during the interview either, as it can take up to 15 or 20 minutes—and lots of resources—to
create some of the bigger lookup files. So, we are creating them on the interviewer laptops: right after the
interviewer has picked up the transmission with the preload data for that case, the IMS checks whether
lookup files for zip code and state are already on the laptop. If not, they get created at that point.

We tried to optimize the Manipula process that creates the lookups to minimize the time needed when
interviewers get a big number of cases assigned at once. Somewhat to our surprise, we found that splitting
the process in two separate Manipula setups was faster than using just one setup.

The annually growing file with NPI records is too big—close to seven million records at the moment—to
fit into memory in a Manipula setup, where that would have been useful. So, using a two-step process,
each one using a differently sorted file, we ended up with a combined process that was much faster than
the one-step approach. This was much appreciated by field staff and home office staff who sometimes had
to wait for the completion of this task.

We have also reduced the size of some of the biggest lookup files by basing the diameter of the circle
around the zip code centroid on the urbanicity degree of the area (this is also freely available data). The
thinking there is that there are many more medical providers in urban areas compared to rural areas, so
respondents would typically not travel as far to see a provider. This means that instead of a 100-mile
diameter, we can have a much smaller diameter in, say, New York City compared to a rural area in, for
instance, Wyoming.

On the other hand, the process gets slightly more complicated by choosing to include certain providers in
all lookup files, regardless of their zip code. These are what we call ‘Centers of Excellence,’ with

> back to Table of Contents

4

examples like the Mayo Clinic, Sloan Kettering, Johns Hopkins, and other well-known medical facilities.
People may travel to these centers for consultation and/or treatment, including surgery. While these cases
may be relatively rare, they may include extensive and expensive medical treatment. Including these
facilities in every lookup file helps us to capture everything about these visits as accurately as possible.

6. Presentation
Lookups, including trigram lookups, have been available in Blaise for decades, so Blaise users are likely
to be very familiar with the look and feel of these screens. There are, however, some elements that can be
tailored or added to make a lookup more user-friendly and more effective, as well.

We are using a Manipula dialog for the display of the lookup, which allows us to add a few elements that
are useful to interviewers.

Figure 2 is a screenshot of a typical search.

Figure 2. Medical Provider Lookup Screen

Note the red line at the top, which shows the detailed information of the currently selected line in the
results grid. This ‘detail line’ gets updated automatically whenever a different line is selected and it
allows the interviewer to easily see all the available info on that provider, even parts that might be cut off
in the results grid.

There are search tips for interviewers near the bottom because it can really be a difficult task to help a
respondent recall details of an event and names of doctors and facilities, even more so if the event
happened several months ago.

> back to Table of Contents

5

We also included an option to filter the results and display only facilities, instead of doctors and facilities
all mixed together. As you can see in Figure 3, we have a checkbox with the label “Show only facilities”
next to the searchstring input line. When checked, we get the following:

Figure 3. Medical Provider Lookup Screen with a Filter to Show Only Medical Facilities

Note that all records now are facilities and that the label for the checkbox now reads “Uncheck to show
all providers.”

This capability to filter search results is quite naturally built-in in Blaise 5, but in Blaise 4.8, it is a fairly
well-hidden feature. Using it requires a decent amount of work, and if you want to do your own sorting of
search results, it also requires a recalculation of trigram scores, as those are not passed on with the search
results.

The searchstring that the interviewer types to try to select a provider can be accessed and stored for later
analysis. When no match can be found in the lookup, the interviewer can select the “No Match” button
and enter provider details verbatim.

7. Conclusions
Trigram lookups in Blaise work very well and fast, even with very large lookup files. This is as true in
Blaise 5 as well as it was in Blaise 4. In Blaise 5, the additional flexibility for presentation and the ease of
filtering search results are much appreciated.

> back to Table of Contents

1

Session Data Preservation and Migration—Problems and
Solutions
Jason Ostergren and Helena Stolyarova, University of Michigan Institute for Social Research

The Health and Retirement Study (HRS) at the University of Michigan Institute for Social Research is a
longitudinal study that originated in 1992, switched to conducting interviews using Blaise 4 in 2002, and
moved to Blaise 5 in 2018. Among the challenges HRS has faced since the switch to Blaise 5 is how to
handle Blaise 5 session data when an interview is not completed in one sitting. Session data is the
working database that maintains the state of the instrument, including the values of temporary data and
properties of fields. If that data is lost in a case where an interview was interrupted and has to be resumed
later, significant problems can result if the instrument is dependent on session data to resume correctly, as
is the case with HRS. There are a number of aspects to this problem, and HRS has tackled new and
different ones in each of the three (2018, 2020, and 2022) waves of interviews since adopting
Blaise 5. Data migration has been at the center of some of these issues—for example, HRS has had to
incorporate careful attention to harmless changes into processes for updating instruments in the
field. Most problems have been solved, sometimes with significant help from CBS, but with varying
degrees of completeness—for example, it was thought that data migration issues had been solved in 2020,
but it turned out that mode switches rendered that solution incomplete. Finally, HRS has determined that
it would be useful to retain and preserve session data after interview completion, which has been partially
solved as well. This paper will break down why session data has been important to HRS, as well as the
various issues and solutions to the problems that have arisen—including testing tools—and what remains
to be done.

1. Session Data
A brief discussion of the nature and purpose of session data is in order. Session data is the stored state
information from the Blaise 5 session service, which handles active interview sessions. The runtime
session database (shortened to “session database” here), where the session data is stored, is regularly
updated with data from the active interview while in session. Additionally, the session database persists
session data when an interview is interrupted. When an interrupted interview is resumed, provided there is
a primary key, Blaise first checks to determine whether session data are available. If session data for the
key are found in the session database, the interview is resumed where it left off, with all session data
present, including auxiliary data and survey state. This process is at the heart of the issues discussed in
this paper. There are a variety of ways that session data might be lost before an interview is resumed, and
in a survey like HRS, this causes problems for any interview that is interrupted. Generally speaking, HRS
needs session data to be preserved both between sessions and across new datamodel releases (within an
HRS “wave” [e.g., HRS 2020]). There are a number of reasons that this is the case.

At first glance, session data may not appear to be a crucial component of the Blaise system for a user to
understand. Indeed, in many use cases, there would be no need for a Blaise user to consider it at all.
Session data-related issues arise mainly due to the ways external processes interact with Blaise
interviews. A simple web survey that is deployed and runs without interruption or intervention until the
end of its interview period would be unlikely to be impacted by these issues. The failure points that HRS
has experienced occur in transitional processes. One such process happens when particular interviews are
stored and transferred within our system—for example, between servers in the building and field laptops.
Another such process happens when new versions of the HRS datamodel must be deployed, replacing old
versions (rather than multiple versions running side by side).

> back to Table of Contents

2

2. HRS and Session Data
The other element that makes session data a concern to HRS is the complexity of the HRS survey
instrument. HRS has design features, legacy code, and operational requirements that turn out to make
session data important in a number of ways. A very simple instrument subject to the same transitional
processes alluded to earlier may have some problems (e.g., resetting the position to the first question), but
those would be among the more manageable ones HRS encounters. The risk was not immediately
apparent to HRS. In fact, HRS has come across new problems connected with session data in each of the
three “waves” since adopting Blaise 5.

Among the design features and legacy code found in HRS that make session data significant are the
following.

HRS has reusable question series for estimation (referred to as “unfolding sequences,” or just
“unfoldings” hereafter) that are scattered throughout the instrument after questions where a respondent
may be unsure about an important amount, such as the value of a house or pension. These are
programmed as procedures for legacy reasons and, as such, are made up of temporary data—even the
questions defined as Blaise Fields are actually treated as auxfields. Historically, it was possible to close a
routing gate after each procedure was complete and preserve the final result. If an interviewer needed to
get back in, there was a complicated method of doing so involving erasing answers and moving back and
forth. In a theme that will repeat in this paper, the need to support web self-interviews required a change.

HRS also ran into a variety of issues connected with losing session data that were not HRS specific. For
example, when resuming a case that had lost session data, the interview would revert to the first field on
the route rather than the field at which the interview was suspended. This forced the interviewer—or
worse, a self-interview respondent—to step through the dozens or hundreds of questions that had
previously been answered. Another such problem was that formerly suppressed signals would be reset
and require intervention again.

HRS also ran into some still-mysterious data-loss issues that likely result from complicated programming
for arrayed data (in this case, data about children-in-law) reacting badly to the loss of session data upon
resume. This highlights the need to consider session data in testing. HRS has a variety of custom tools for
testing its instrument and dedicated staff to handle the testing. An enormous amount of time is spent
testing each instrument to minimize flaws. However, until HRS discovered the kinds of session data
problems described in this paper, there was no provision in those tools to simulate loss of session data;
therefore, problems resulting from that eventuality (like the missing children-in-law) were not discovered
before the field period began.

One last wrinkle is that there was initially no effort to preserve any session data after the interview was
over. When problems were discovered later on, there was a desire to look at session data to troubleshoot
and reconstruct missing data, much like is often done with audit trail data. Paradoxically, of course, even
if the session data were preserved in general, it would have been partially missing from the problem
cases. Nonetheless, while preventing loss of session data during suspend and resume was the highest
priority, HRS realized that once that was solved, it would be desirable to retain session data even after the
interview was complete for later reference.

3. HRS Session Data Vulnerabilities
To expand on the reasons mentioned earlier for the HRS instrument being vulnerable to loss of session
data mid-interview, a little background is required. The design and programming of the HRS instrument,

> back to Table of Contents

3

which goes through a process of reevaluation and improvements in each two-year cycle, attempts to
balance out a huge amount of content with extensive customization of flow, question text substitutions,
and other tricks. The interview typically clocks in at more than two hours—sometimes much more—so a
lot of attention is paid to complicated logic to minimize the number of questions and to an equally
complicated amount of logic to make question text personalized for each respondent as much as possible.
When the decision was made to add a web self-interview mode to the HRS instrument starting in 2018, a
comprehensive reevaluation of all this logic was undertaken. For example, it was quickly determined that
the self-interview needed to support respondents if they simply clicked next rather than answering a
question. In other words, our interviewer-administered mode rarely allows empty answers—the
interviewer may probe when instructed or assign DK/RF or other codes as needed. HRS determined that
none of these options should be forced on self-interview respondents (“self Rs” from now on).

Furthermore, where previously HRS made extensive use of gates (using conditions that stored data from
sequences and removed them from the flow) to close off precisely the kinds of sequences that are now
causing problems in session data, now HRS strives to minimize such devices to prevent confusion among
self Rs. The reason for this was mainly that having a “previous” button to allow the self R to have control
over the ability to return to a previous question was important, but gates that removed previous questions
from the flow would make the self R unable to locate their previous answers. Sometimes this could be
handled with instructions to the self R, but it was determined that these should not be common
occurrences anymore.

There were multiple aspects to addressing this issue. For example, HRS gates normally rely on the
interviewer answering a gate “question.” This question would have some instruction to the interviewer,
even if there was no text to be read to the respondent. The interviewer would then know that once they
answered the question, the previous sequence would be inaccessible (at least without some complicated
process). Since HRS determined not to force any answers on self Rs and Blaise logic requires some
catalyst to properly close a gate, HRS had to remove or replace gates with other mechanisms. Where HRS
simply removed gates entirely, as in the case of the aforementioned unfoldings, the loss of session data
would cause the code to be reevaluated and the final answers would be emptied out as a result because the
session data they relied on was emptied out.

When HRS retained existing gates, it turned to other mechanisms that proved vulnerable to this problem,
as well. One such mechanism is the use of the isVisited property to trigger a gate in place of a human-
selected answer when, as the name implies, the field is visited (appears on the screen). Since some gates
were still required, this was used in a handful of places, including some that turned out to require very
complicated logic and even custom browser DEP code. The use of isVisited presented its own problems
initially. HRS quickly discovered that it was losing this property data alongside the session data in 2018.
We believe that in Blaise versions released after that time, it became possible to persist properties like
isVisited by redeclaring them. However, HRS has not explicitly tested this in our process, and we are still
under the impression that isVisited is precarious without preserving the session data. The point of all this
is that if session data is lost and isVisited is lost with it, gates are unintentionally opened, and the
previously gated logic is then reevaluated incorrectly because the gated logic also relied on now missing
session data.

4. HRS 2018
With a lot of troubleshooting and experimentation, and with considerable help from CBS, HRS has made
progress in chipping away at the kinds of problems outlined above. In 2018, HRS experienced widespread
problems with loss of session data. In the case management system used for interviewer-administered
cases, session data was being lost on every occasion when an interview was suspended and resumed. This

> back to Table of Contents

4

resulted in problems like data loss in unfoldings, as described above. This not only caused a loss of data,
but also caused respondents to be reasked many questions they had answered before—or alternatively, it
caused an employee to have to painstakingly reenter the previous answers from the audit trail, for
example.

This problem turned out to be one of the easiest to solve and simply stemmed from inexperience with
session data the first time out. In the case management system that was being used, the case files were
always packaged and stored after a suspend and the working folder being cleared. When a case was
resumed, those files were brought back to their previous locations. However, because there was not a
general awareness of the importance of session data, those files were being deleted in this process. Once
we realized this, it was a simple matter to retain the session data files, and this problem was solved.

Along these lines, one key takeaway from this paper is that session data should be considered a normal
and necessary component of Blaise 5 operation. At the very least, care should be taken with whether it is
being retained up until the point when an interview is truly completed.

5. Harmless Changes
Another concept that needs attention is that of harmless (or harmful) changes. This notion concerns data
file compatibility (in particular, for the purposes of this paper, session data file compatibility) in a case
where a survey needs to be replaced with an updated version of itself. While changes to a survey that
break data file compatibility may be common during the development of a survey, once real data
collection starts, serious problems can arise if compatibility is broken. Blaise uses a checksum to
determine compatibility and may refuse to launch or install a survey if the checksum fails. To make things
slightly more complicated, some changes that cause checksums not to match may still be harmless. For
example, changing the number of fields in a survey breaks data file compatibility and alters the checksum,
but the change can still be considered harmless if the change was due to fields being added rather than
deleted. The Blaise 5 online help specifies a set of general rules governing this situation, as follows:

• No (relevant) items may be removed.
• Items can be added.
• Each item of the new collection must be a harmless extension of the related item (i.e., with the

same name) of the old collection.

The online help also notes: “As a rule of thumb, extension of the data definition, such as an additional
field, enlarging a string, or expanding answer categories, are fairly harmless.”

In practice, if one needed to harmlessly rename a field, for example, it would be necessary to retain the
original field (while taking it off the route, probably with a keep statement) and add a new field with the
changed name. Simply renaming the field would be a harmful change because it effectively removed that
field from the instrument. In principle, there are ways to make almost any proposed change harmless with
enough attention to detail.

6. HRS 2020
HRS was forced to begin thinking seriously about how to handle changes between versions during its
second (2020) fielding of a Blaise 5 instrument. One of the (perhaps peculiar) features of HRS is that
during the field period, which often lasts most of a year or even more than a year, HRS updates its
instrument with fixes for problems identified in the field and with high-value changes requested by

> back to Table of Contents

5

investigators. As a result, HRS has a history of releasing multiple versions of its datamodel each wave (an
average of one per month over a year is not surprising). Importantly, these are very similar datamodels,
usually with logic or wording bugfixes, new Spanish translations, or added question sequences arising
from unexpected events (e.g., COVID-19). In other words, they are conceptually identical for the most
part and lack the kinds of wholesale rewrites of sections or sequences that can be made during the
preproduction phase between field periods. Therefore, HRS has always assumed (and found in practice in
our interviewer-administered-only Blaise 4 environment before 2018) that data could be easily transferred
between these versions within a “wave.” In particular, HRS assumed that there would be no problems
when a case is suspended in one datamodel version but must be resumed in a later one (incidentally, the
versions may not even be consecutive, since there is occasionally a long lag between suspend and resume,
based on the respondent’s schedule or wishes).

Unfortunately, HRS discovered that it was not possible to resume a case in a newer datamodel version
that was suspended in a previous datamodel with session data intact. By this point, HRS had learned to
preserve the session data files as described above, so this problem revealed itself only after having solved
the previous one. What is more, it turned out that this newly discovered problem occurred even if there
were no harmful changes between the two datamodels in question (as of Blaise release 5.10.6).

To take a step back, HRS at first thought that data incompatibility might be the cause and looked deeper
into understanding harmless/harmful change concepts. As implied above, the key requirement for
preserving session data between sessions in different datamodel releases is that the new datamodel must
not have harmful changes. Because the rules governing harmful or harmless changes can be a little vague,
it is necessary to resort to some form of testing or tool to detect harmful changes. For example, Blaise 5
ships with a sample Manipula script for detecting harmful changes, which can be found in the samples
folder:

• \Documents\Blaise5\Samples\Specific Features\Manipula\HarmlessChanges\HarmlessChanges.bsol

This script compares two datamodels and reports whether it detects either no changes or only harmless
changes, or, as a third possible outcome, it lists all harmful changes. HRS had previously tried this
Manipula sample, but it did not work well due to a bug causing a listing of more than a thousand false
positives. As a result, HRS was essentially guessing at whether changes were harmful and was not fully
engaged in documenting this. When HRS began to run into these datamodel version update problems
during the 2020 field period, CBS was called in to help and quickly provided a small code change to
make this script work as intended for HRS. CBS also provided sample API code for building a tool to test
datamodel updates with harmless changes, along roughly the following lines:

private void ApplyHarmless(string oldDMbdixFilename, string newDMbmixFilename)
{

DataLinkAPI.IDataLink5 dl = DataLinkAPI.DataLinkManager.GetDataLink(oldDMbdixFilename) as
DataLinkAPI.IDataLink5;
dl.ApplyHarmlessChanges(newDMbmixFilename);

}

HRS was then able to verify compatibility between datamodels and was immediately presented with the
next problem: session data was always treated as incompatible, regardless of the harmless change
determination in the version of Blaise HRS was using for development at the time (5.10.6), as well as
earlier versions.

In order to solve this problem, CBS provided a special unsupported 5.10.10 release to accommodate this
need for the then upcoming start of HRS 2022 interviewing. Basically, in that version, the

> back to Table of Contents

6

“ApplyHarmlessChanges” would successfully run against the session database, allowing a suspended case to
be resumed in a new datamodel version, provided that only harmless changes were present between the
two. This capability should be a normal part of the Blaise 5 feature set from 5.13 on (note that HRS never
tested these features in 5.11 or 5.12, but CBS had specifically mentioned 5.13 in this regard, so that would
seem to be the best starting point), meaning updates that preserve session data are now a normal
supported part of Blaise 5 operation. So far, our testing in 5.13 has borne this out. In addition to the API
functionality, a number of options now (as of 5.13) appear in the Blaise 5 Server Manager when updating
an existing datamodel that allow for this, as will be discussed later.

7. Testing Harmless Change Compatibility
This new capability (in 5.10.10 and 5.13.x) has allowed HRS to add functions to test session data
migration between datamodels in our testing tools. So, to complement efforts by programmers to keep
harmful changes in mind while programming (the first line of defense), and to allay any lingering doubt
about the aforementioned Manipula script’s accuracy (which is the second line of defense), HRS can
actually test suspending a case in one datamodel, updating the datamodel, and attempting to resume using
the main HRS case testing tool. Additionally, the staff at SRO, who handle field operations, do a final test
using tools with the aforementioned code. As a result, session data problems due to this set of issues have
been minimized in the 2022 field period.

Following is an illustrative process (as of Blaise 5.10.10) for testing datamodel migration with harmless
changes to preserve session data, which works in a normal server deployment:

1. Copy a preloaded .bdbx into the .bpkg of the initial datamodel (or equivalent process to handle
preload).

2. In Server Manager, install the .bpkg of the initial datamodel.

3. In Server Manager, start in browser with normal arguments, test some “unfoldings” and signals, and
suspend.

4. Run a tool with the ApplyHarmlessChanges API function as administrator against the deployed .bdix in
the \Blaise5\Surveys folder and the .bmix from the new datamodel with the harmless changes.

5. In Server Manager, start in browser with normal arguments. It will then resume in the correct place in
the new datamodel with session data intact.

The problem with updated datamodels that was described above had one particularly troublesome twist
that will require some extra detail and an alternative set of testing steps to describe. HRS has been
handling web self-interview and telephone or face-to-face interviewer-assisted cases using different
systems so far, though efforts are being made to eventually merge everything into one. The web self-
interview cases run from a server in a conventional way, but the interviewer-assisted cases run in a
locked-down laptop environment in Windows DEP standalone mode. A lot of extra steps were involved
in making datamodel updates work in that environment.

Following is an illustrative process (as of Blaise 5.10.10) for testing datamodel migration with harmless
changes to preserve session data, which works in Standalone mode:

1. Copy a preloaded .bdbx into the .bpkg of the initial datamodel (or equivalent process to handle
preload).

2. Copy this .bpkg of the initial datamodel into the same folder as the DEP (and its associated .dlls).

> back to Table of Contents

7

3. Run the special DEP with the commandline argument -RunMode:ThickClient (and other normal
arguments), test some “unfoldings” and signals, and suspend.

4. Run a tool with the ApplyHarmlessChanges API function against the deployed .bdix and the .bmix from
the new datamodel with the harmless changes.

5. Copy the three files that are updated by the ApplyHarmlessChanges tool from the deploy folder into the
same preloaded .bpkg from Step 2.

6. Run the special DEP with the commandline argument -RunMode:ThickClient (and other normal
arguments). It will then resume in the correct place in the new datamodel with session data intact.

8. HRS 2022
In the 2022 field period, HRS encountered another new twist on session data preservation. This was
connected with a new style of mode switch being supported in 2022. In this approach, cases could be
passed from the standard web server deployment into the offline standalone laptop environment. To make
this approach work for HRS, SRO uses a heavily modified custom DEP, based on CBS examples and
assistance. The sync process in this custom DEP presents issues with preserving session data. In a
variation on the previously discussed suspend-resume issue, HRS had cases that switched from web-
based self-interview to telephone interview from an offline laptop, and many of these cases had been
started before the switch. It was discovered that starting the case prior to the switch caused many
calculations and assignments to happen, even if it was suspended on the first screen, and those were
reflected in the .bdbx that was being transferred, causing problems. If the case was resumed using only
the .bdbx without the session data in that situation, you would get some corrupted data. For example, the
aforementioned problem where children-in-law got deleted cropped up as a result of this.

A number of discussions with CBS have resulted in a possible fix coming down the road in Blaise 5.14 or
5.15. Just like the previous changes concerning preserving session data during datamodel updates solved
that problem in the HRS 2022 field period, HRS is hopeful that these upcoming fixes will eliminate one
more cause of session-data-related difficulties in the HRS 2024 field period.

One clear trend in all of this is that each set of Blaise fixes have unmasked new deeper issues with HRS
and session data over time, but it is also the case that the magnitude of the problem keeps shrinking wave-
on-wave. Whereas the first issue impacted potentially thousands of cases, the subsequent issue may have
affected hundreds of cases, and the most recent is impacting perhaps less than a hundred. Additionally,
new versions are bringing more features to address these issues. For example, the Blaise 5 Server
Manager presents more options when installing surveys over previously existing ones in Blaise 5.13.
Some of those will be discussed below. Overall, our hope would be that questions about what happens to
session data will eventually permeate every part of the system.

9. Preserving Session Data After Completion
One last concern that fits by virtue of being about session data but is not a bug or unsolved issue of any
sort is the preservation of session data after a case is completed. So far, this paper has discussed mainly
preservation of session data on suspend and resume, first within the same datamodel, then across different
datamodels, and finally through the custom DEP sync process. All of those were concerned with
successfully completing the interview when multiple sessions were involved. This additional issue of
long-term preservation of session data is for all interviews. To some extent, what HRS wants from this is
already handled by audit trail data—that is, the ability to go back later and review a case that had

> back to Table of Contents

8

problems, determine what went wrong, and recover missing answers, as well as other related needs.
Having session data available for later review would expand on that since it contains all the working data,
such as auxfields. This could make later investigations easier by providing a more direct way to see what
might have caused a particular problem.

HRS did not realize that session data was deleted upon case completion until well into the 2020 field
period. In response, SRO was able to develop an approach for HRS that uses SQL Server triggers (the
self-administered mode of HRS stores data in SQL Server) to copy the session data to another database
right before any delete command is executed. This has worked well for the parts of HRS 2022 using SQL
Server. In the future, CBS has indicated that new options may be added to natively prevent deletion of
session data, if desired.

> back to Table of Contents

9

10. Examples
To illustrate harmful/harmless changes, we use a simple datamodel. Note that there is a field
HARMLESS_CHANGE that is off the route for now. We plan to add it later on to demonstrate that this
change is harmless.

> back to Table of Contents

10

After installing and deploying this survey, we are able to view session data from Blaise Server Manager.

At the first installation, we choose the options to overwrite the data and clear sessions.

After answering a series of questions, we are able to view the data in fields and auxfields through Session
Viewer. You can also do it from the Blaise Control Center.

> back to Table of Contents

11

Provided that your survey has a Primary Key, defined in your datamodel, you can view your session data:

> back to Table of Contents

12

Now, suppose we want to add a new field to a datamodel that is already deployed in the field.

> back to Table of Contents

13

This change would be harmless. After installing a new survey over the old one, the new field is on the
route and the session data is preserved. Note in the following screenshot that the auxfield data is also
preserved. Prior to Blaise 5.10.10 this would not have worked.

> back to Table of Contents

14

Now, suppose there is need to change a field type in the survey that is already deployed. Here, we are
changing the type from OPEN to ENUMERATION for HARMFULL_CHANGE field.

> back to Table of Contents

15

Since the type of the field had been changed, we were unable to install the survey over the existing one
without overwriting the old session data. An attempt to do so will result in the following error message:

Given the complexity of HRS and the number of datamodels released into the field after the data
collection has started, we always run a harmless change tool to check for harmful changes. This useful
tool provided by the Blaise team is located here:

> back to Table of Contents

16

Compile and run HarmlessChange.bsol. You will be asked to provide the locations of the old and the new
.bmix files that need to be compared to detect if there are harmful changes.

In our example, the report is generated, warning of the field type mismatch in the datamodels.

> back to Table of Contents

17

To remedy the problem, HRS uses the following techniques:

1. We create a new field that has the desired type without commenting out the old one.

2. We keep the old field on the route but put an IF-THEN statement that is never TRUE around it.

Now, when we compile and run HarmlessChange.bsol, we get a positive result!

> back to Table of Contents

18

When we install the new survey over the old one, we use the following options to preserve the
session data:

When viewing the session data for the new survey, we can see that the old session data is
preserved.

> back to Table of Contents

19

11. Appendix—Source Code
DATAMODEL IBUC2023 "HRS Questionnaire"
 FIELDPROPERTIES
 Remark : OPEN
 IsVisited : TIsVisitedFieldProperty
 Mode : STRING
MODES = SELFADMIN DESCRIPTION ENG "taken by respondent" SPN "tomada por encuestado",
 IWERADMIN DESCRIPTION ENG "administered by interviewer" SPN "administrado por el
entrevistador"
LANGUAGES = ENG "English", SPN "Spanish"
PRIMARY Sampid
TYPE
 TIsVisitedFieldProperty = (No (0), Yes(1))
FIELDS
 SampID
 /"SAMPLE ID": STRING[50], NODK, NORF, NOEMPTY
HARMLESS_CHANGE
 ENG "This is a new field, so the change should be HARMLESS when it is added."
 / "More info specify"
 : STRING
{keep the old field in the datamodel}
HARMFULL_CHANGE
 ENG "This is a existing field, so the change should be HARMFULL when it is removed."
 / "More info specify"
:OPEN
 {Create a new field with the desired type}
HARMFULL_CHANGE_NEW
 ENG "This is a existing field, so the change should be HARMFULL when it is removed."
 / "More info specify"
 : (No (0) "NO", Yes(1)"YES")

TEST_OPEN_FIELD
 ENG "This is the permanent open field in the database. When it is visited,
 the IsVisited field property for this field is set to YES"
 / "TEST open field"
 : OPEN
TEST_IS_VISITED
 ENG "Previous field was visited: ^{FLIsVisited}"
 : (CONTINUE (1) ENG "Continue" SPN "Continúe")

LOCALS FLIsVisited : STRING
AUXFIELDS TEST_AUXFIELD : STRING
RULES
 Sampid.KEEP
 HARMLESS_CHANGE
 {Keep the old field on the route, but so that it is never asked}

> back to Table of Contents

20

 IF 1 = 2 THEN
 HARMFULL_CHANGE
 ENDIF
 HARMFULL_CHANGE_NEW
 TEST_OPEN_FIELD
 IF TEST_OPEN_FIELD.IsVisited = YES THEN
 FLIsVisited := 'Yes, this field was visited'
 TEST_AUXFIELD := 'Auxfield has value'
 ENDIF
 TEST_IS_VISITED
ENDMODEL

> back to Table of Contents

1

Design Considerations for Web and CAPI Multimode Using
Blaise 5
Todd Flannery and David Simpson, Westat

Presenter: Todd Flannery

1. Introduction
Differences in modes like CAPI and CAWI present some unique challenges related to data collection and
storage for a single instrument. For example, the web may require token authentication that is not needed
in a secure disconnected tablet environment. In Blaise 5, we have tools that allow us to present question
text and create unique routes that are based on either the mode or are perhaps device specific for the web.
This paper describes several of these methods used to allow synchronized code updates between multiple
modes by using prepared directives along with other specialized techniques to develop the code base.

For some projects, both the web and disconnected CAPI are used in order to collect instrument data from
sampled respondents. To accomplish this, we have designed and developed an instrument in Blaise 5 that
allows us to handle difference in the modes. In order to maintain comparability of the data, we need to
ensure that the text of the questions and responses are consistent, but each mode has some unique
considerations that also need to be addressed.

2. Some Initial Considerations
Time is not always on your side. We made the decision early in the design stage that our modes were
different enough to forego trying to align the data model structures perfectly. To this end, the data and
paradata can be separated into web or CAPI when they are being collected. Although this approach results
in a greater amount of work in terms of the data alignment on the back end, it is less constraining on the
data model design and development.

Web design requires more focus on accessibility controls, security, and maintaining mode-specific
templates and layouts that can be used on a variety of devices and browsers. There are other CAPI-
specific controls like touchscreen use, electronic signatures, or text-to-speech that may require specialized
code like actions setups that may not be available via a client-server configuration. Additionally, since a
disconnected CAPI instrument uses the Windows Data Entry Program, consideration needs to be given to
developing layouts for a non-browser–based instrument. Although many differences in template design
by mode can be effectively seen in the layout design, each mode (and browser) should be tested via data
entry to detect errors in the layouts. Several elements of web versus CAPI design are depicted in Figure 1.

3. Code Methods—Use of Conditional Defines
Conditional defines (Figure 2) can be used to maintain separate project settings while having each project
use the same files, and we can then allow the same text, fields, rules, or other Blaise controls to be shared
among the projects. If we align the projects to specific modes, we can then update things like text and
guarantee comparability over multiple modes. For our study, we have a mode (or project) for CAPI and
several modes aligned with the different web servers (development, testing, production, etc.) When we
build the BDIX files and associated objects like SQL tables or SQLite database files, they are associated
with the mode that is defined for the specific project. This allows us to open the project to only view the
routes, definitions, and layouts for the defined mode. For our project, the focus on maintaining consistent
text translates into keeping the question texts and response texts outside of these conditions, whereas the

> back to Table of Contents

2

mode-specific text roles, procedures, blocks, fields, routes, or layouts may be exclusive to the mode in
which the build is occurring (Figure 3).

Figure 1. Web Design and CAPI Design Elements

Figure 2. Use of Conditional Directive for a Non-Web Screen

> back to Table of Contents

3

Figure 3. Definition for the Non-Web Build Mode of a Project

4. Web-Specific Considerations
For the web, some additional controls are required to be able to prevent security breaches into the study
data or maintain compliance with accessibility standards (508, WCAG). Token authentication involves
passing an expiring unique identifier (i.e., the token), like a GUID, into a Blaise instrument to be verified
against an external data source before it expires. This ensures that access to the study data is only allowed
from a known source, such as a landing page for a website. Since the source of the Blaise instrument is
completely controlled in a disconnected mode, there is no requirement to token authenticate for CAPI, so
we can exclude that section of code based on the mode. Blaise 5 help provides documentation for
accessibility requirements settings and has the example “Visually Impaired” to demonstrate features
associated with accessibility. Depending on project requirements, these controls may be mode-specific, so
we can use the conditional defines to define our metadata based on these mode requirements.

5. CAPI-Specific Considerations
5.1 Action Setups
Blaise 5 allows use of one action setup per project to shell to either Manipula or non-Blaise processing,
like an application to collect e-signatures. This method has been very useful in our project to allow some
nonstandard Blaise behaviors like looping back to an earlier field on the route without first triggering an
error message. If your user is a respondent, behaviors like these can be simpler to administer than training
the user to react to error messaging. Since Blaise limits these action setups to thick client mode, some
actions that are desired for the web need to use alternative methods to do this additional processing.

> back to Table of Contents

4

5.2 StartLocalProcess
We find the StartLocalProcess method via expressions in the resource database to be very useful in
disconnected mode, as an alternative to using an action setup because the StartLocalProcess method,
unlike Action Setup, does not require a page refresh (Figure 4). The action can call an external program to
perform multiple actions. This in turn allows some processing to be done outside of conventional Blaise
behaviors while a user may have scrolled down to the bottom of a page (a page refresh would by default
show the top of the page).

Figure 4. Using StartLocalProcess in the Events Editor Instead of Action Setup to Call an External Process and Send
Some Parameters

6. Both Web and CAPI Considerations
6.1 Texts
Since the content of the questions and responses is critical to the data quality, we need to ensure that any
edits to these texts are simultaneously applied to both modes. The easiest way to satisfy this requirement
is to have a single source for both modes. So, aside from mode-specific text (e.g., CAPI interviewer
instructions), we share text across all modes for instrument questions and responses. Additional text roles
that do not involve question or response text, like alt text for accessibility via the web or CAPI-
interviewer error messages for CAPI mode, can be specific to the mode at build time.

6.2 Using Expressions and Assignments in the BLRD
To be able to capture user behaviors that trigger data assignments, we can use expressions or assignments
in the events editor (Figure 5). This allows us to confirm whether an image or video was clicked on and
can determine routes or error messages.

> back to Table of Contents

5

Figure 5. Assigning to Field Reference Based on a Click Event

6.3 Use of Server Variables
Server variables can also be useful to allow assignments based on user behaviors, like clicking on a
“Next” button instead of responding to something on the page or initiation of some ACASI events. These
values can also be passed to procedures in an action setup for thick client configurations (Figure 6).

Figure 6. Using Server Variables to Store Boolean Values Used in Expressions.

7. Data ALIGNMENT and Handling Field Updates
The desire to design and develop separate data structures that use the same texts leads to some additional
complexities when transferring data between modes or merging data for delivery. For example, in order to
maximize the response rate, some studies will allow a web user to skip past a field without responding,
whereas CAPI mode requires the respondent to enter a nonresponse value of “don’t know” or “refused”
before progressing in the route. Since these definitions may contain different values, you must consider
how to store, transfer, or deliver the data.

> back to Table of Contents

6

8. Results
Overall, results have been successful in the approach to use a single code base for text and have the
metadata structures and layouts designed and developed based on the mode. Additional time is required to
process and analyze test results, since the data are dependent on the mode. The experience has enriched
our knowledge base of each mode and will inform future decisions regarding how to adapt to multimode
requirements to more efficiently combine or separate the design and development for each mode.

9. Limitations of the Approach
One of the benefits or drawbacks of the approach is that conditional directives can appear anywhere in the
code base, such as field definitions, rules, or layouts. So maintaining or discerning where modes differ
between the built data models can be complex without strong source code management. Additionally,
since the conditions themselves drive the build process but are not part of it, making sure that all of the
“{$IFDEF}”, “{$ELSE}”, and “{$ENDIF}” statements can be burdensome. To assist with this task, it is
helpful to know that an enhanced search of the number of $ENDIFs necessarily needs to be the sum of
$IFDEFs and $IFNDEFs. To be sure, trying to track down missing conditional define statements can be
difficult.

Given ample time for development and design, a single data model that allows data in either mode may be
optimal, since the approach for using separate data structures by mode also requires significant
commitment to merging data as a back-end task. So, given that design elements like layouts or web-based
controls will need to be treated separately, consideration needs to be given as to whether the additional
task of maintaining separate data is desired as well, especially if your project is intended to be fully
multimode, such as when a respondent is given the opportunity to start in one mode, save and exit, and
then finish in another mode.

10. Where to Go from Here
• Greater specificity of controls for the modes: Refining how to apply the conditional directives

involves some trial and error to achieve optimal behavior and storage of the data in the data
models. As we continue to learn more about how the design of web instruments improves our
data collection capabilities, we can work to adapt how each mode can be made more efficient.

• As time allows, align the data. Ideally, one database shared among modes would allow for real-
time multimode sharing of the data. Achieving this goal also eliminates the need for back-end
processing to align the data, as well as the need to do multi-instrument synchronized releases. An
intermediate step may be to have a server-based process to copy data from mode to mode, but this
requires some lag time to handle the copying.

• Refinement of the processing: We apply many concepts from the exploration of multimode
instrument development to include actions that occur outside of Blaise, enabling greater
flexibility in our handling of on-screen behaviors and actions. Additionally, we can continue to
apply some of the techniques like the use of server variables or adding events to enhance web
processing to allow greater ease of use for users.

• We can continue to refine template design to allow the use of parameters in the templates
themselves in order to have a consistent appearance across modes wherein a single design change
can be applied to templates that are used in either mode.

> back to Table of Contents

7

11. Conclusions
Design and development for multimode instrumentation requires significant planning in determining
which approach regarding database structure, code base, resources, and layouts is exclusive to each mode.
Given substantial time to plan this work, a single database and codebase could be achievable, but complex
studies rarely provide for this benefit. To be able to collect high-quality data via the web and disconnected
modes, the approach to utilize these techniques of retaining a single code base for text and allowing for
differences in data structure and layouts has proven beneficial in circumstances where complete
harmonization of the data between modes is not possible in a single structure.

> back to Table of Contents

1

Advanced Editing: Integrating Blaise with a Management System
Peter Stegehuis and Seth Benson-Flannery, Westat

Presenter: Peter Stegehuis

1. Introduction
During the stage of cleaning interview data, it is good practice to use the same Blaise datamodel as used
in the field for reasons of consistency and efficiency. This paper will touch on the challenges presented by
special demands during this phase. Some of the challenges are in the Blaise datamodel and the data itself,
for instance, the need for additional checks and being able to reach “behind walls” set during the field
interview. We also look at how best to present data issues to staff in an easy-to-use user interface, how to
automatically categorize interviewer comments (Blaise remarks), and how to integrate this editing system
within a comprehensive Home Office System.

2. What Is There to Clean?
2.1 A Different Focus
During a field interview, especially for a longer and more complex survey, the focus is, of course, on
getting high-quality responses, but also on ensuring the continued engagement of the respondent. To keep
the interview going, and not frustrate respondents or give them an easy opportunity to stop their
cooperation, interviewers and the (Blaise) interview program need to work well without significant
pauses. It puts emphasis on good interviewer training on the one hand, and on a well-designed and well-
functioning instrument on the other.

For the design, that could mean choosing to not add too many checks, balancing the need for the highest
data quality with the need to not slow down the interview or frustrate the respondent to the point where
they stop their cooperation. For the CAPI instrument, it means things have to work well and flow well,
without glitches or long pauses.

This means that during the cleaning phase, some additional Blaise soft checks may be applied to
scrutinize situations that purposefully were not flagged with the respondent during the interview.

In very complex instruments, there may be many places where variables get assigned a value behind the
scenes, meaning not in rules that will get reevaluated, which should be undone in case the interviewer
backs up and changes answers in a way that leads to a different route through the questionnaire. This
cleaning up can get very complicated, and it may be a realistic option to do this cleaning up after
completion of the interview, in the data cleaning phase, especially if it is a rare scenario and the data that
is not being cleaned up has no impact on the remainder of the interview with the respondent.

These are a few examples of additional checks that can be applied during data cleaning, either by adding
checks in the Blaise rules that are only active during the data cleaning phase or by running separate
Manipula setups on the Blaise data when loading the case into the data cleaning system and creating new
data cleaning issues for the case when needed.

2.2 Categories of Issues
In the data cleaning phase, the focus shifts to fixing specific issues. Issues to be looked at during the data
cleaning phase may roughly be divided into four categories:

a) Interviewer comments/Blaise remarks

> back to Table of Contents

2

b) Known issues, like additional checks in the cleaning stage
c) New problems with the fielded CAPI questionnaire
d) Issues coming from the HelpDesk, reported by field interviewers after (partially) completing an

interview
e) Issues discovered during the data cleaning phase by a Data Quality Control (DQC) Data

Technician

Interviewer comments can be very useful, but at the same time they are very time consuming to handle, so
we have developed some special ways of dealing with them. During data collection, instead of the
standard Blaise remark screen, we bring up a Manipula dialog that asks for a category before the
interviewer can make the comment itself, and then when the category is known, we remind the
interviewer what specific information to include. This was described in a separate 2018 IBUC paper
(Stegehuis, 2018).

We store the comment in a separate Blaise data file—with the category—but still use the Blaise remark
paperclip for visibility of and easy access to the comment.

When the interview data gets received at Home Office, our DQC process will send these comments
through a Natural Language Process to parse the comment itself and—separate from the category
assigned by the interviewer—assign the most likely three categories for the comment. These categories
are stored with the comment in the DQC issue that gets created and will be visible during data cleaning,
so it is easier to assign the right specialist Data Technician to deal with the issue.

For category b), we have a folder where we have Manipula setups ready to run against all incoming data
and run the necessary checks. Each issue that gets flagged during this process gets turned into its own
data cleaning item in the SQL Server database that will guide the DQC stage.

In case any problems are found in the data, for instance, based on newly found CAPI program issues, as
in category c) above, new Manipula setups can be added to the same folder. The overall system is set up
to execute all Manipula setups in the folder, and flexibility lets us check all incoming cases automatically.
Any discovered issues from these setups will be recorded in the DQC SQL Server database. This
flexibility allows us to react very quickly to any new problems that may be found, even during the field
period itself.

HelpDesk reports and issues discovered by a DQC Data Technician, categories d) and e) above, may be
turned into DQC issues as well, so they can be addressed quickly.

3. Datamodel Changes
As mentioned before, one of the strengths of Blaise is that the same code can be used both for the original
field interview and for the data cleaning stage. The two big advantages of that approach to cleaning are:

• Any changes made during the data cleaning stage will undergo the same routing and rules
checking as the original interview, ensuring that no new data problems are introduced during the
cleaning stage.

• Re-use of the Blaise code for this stage is a big cost saver compared to creating and maintaining a
separate code base that uses different software, especially for complex surveys and for panel
surveys.

> back to Table of Contents

3

However, there are differences in how we’d want to work with the Blaise application based on the
difference in what the main goal is: completing an interview from start to finish versus fixing one issue,
or maybe a few issues, in that entire case.

So, we do want to have one code base but also have slightly different behavior in field interviews than
when used at the Home Office for data cleaning purposes. There are different ways to achieve that, but
the way we have implemented this is by assigning a value to a datamodel-level auxfield on the command
line when a data cleaning “interview” session gets started.

We will highlight just a few behavior changes that this use of the command line parameter enables.

3.1 Walls
The first main section of our questionnaire establishes the household composition, and at the end of the
section we know, based on preload and the answered questions, who will be part of the remainder of the
questionnaire. At the end of this section, we have programmatically erected a “wall,” so that interviewers
cannot back up after proceeding past it. This is a common strategy to ensure that the data collected in the
main interview will not be invalidated by an interviewer backing up and changing the household
composition later on.

In the data cleaning phase, however, it may be important to have access to those first questions, for
instance, to change a typo in a person’s name or correct a birth date or age. Determining whether a section
gets an “ASK” or a “KEEP” in Blaise language based on an auxfield value is easy enough.

The challenge here is what needs to happen at the end of that first section, the code in the wall, if you
will. In the field interview, this is the spot where the person roster, plus all that needs to be carried over
from any preload data, gets put into place. During the cleaning phase, we do not want to overwrite that
person roster (for the same reason we don’t allow backing up during the field interview), so we have to
check at the wall whether any changes were made during the data cleaning session that would have a
negative impact. This is complicated code but is needed to ensure the quality of the data. If all is fine, the
DQC Data Technician can proceed; otherwise, a warning will be put up detailing the problematic
circumstance that has arisen and a decision needs to be made by project staff about what needs to be done.

3.2 Skipping a Section
An easier change in instrument routing during the data cleaning phase occurs when a section can be
skipped as a whole, because it is outside the bounds of DQC staff to make changes there. An example of
this is when we ask household members for signatures or to complete additional questionnaires, either
online or on paper. This is only relevant during the field interview, and we do not need nor want DQC
staff to ever make any changes here, so we use the auxfield parameter value in the datamodel rules to skip
such sections.

4. Data Flow
A somewhat simplified step-by-step description of the data flow and the place for data cleaning within it:

• Data transmissions with completed interviews come in from the field
• Daemon automatically picks up those transmissions and divides parts of the data to deposit them

in the right place on the network (e.g. management data, CARI data, Blaise interview data)
• Load Blaise data for new cases into a consolidated database to always have the Blaise data

exactly as it was before any data cleaning

> back to Table of Contents

4

• Run any interviewer comments (Blaise remarks) through a special process to determine the most
likely category for each of them, making it easier for work distribution later

• Run any necessary checks on cases with Manipula setups

• Log any issues, either from these
checks or from interviewer
comments into the SQL Server
database that is the backbone of our
DQC (the “cleaning stage”)

Of course, some cases will have issues that
need to be cleaned, or at least looked at, and
others will not need any additional scrutiny
at this stage. In our experience,
approximately three-quarters of cases sail
through, meaning they have no interviewer
comments and no issues from additional
checks or from HelpDesk tickets.

Data Technicians work on the issues for the
cases that do need attention using the Blaise CAPI instrument, with a special command-line parameter
that is used to alter the DEP behavior for this stage where needed:

A straightforward skip of a section in this EditMode, or cleaning mode, would simply become:

Note that we are using an auxfield for this designation. The value does not get saved at the end of the
session, so that the desired behavior—interviewing or cleaning—gets set for just the current session and
not for all future sessions.

5. Home Office System Integration
On interviewer laptops, we have an Interviewer Management System (IMS) that shows the field
interviewers their assigned cases and tasks, one of which is starting the Blaise interview. When data gets
transmitted back to the Home Office, parts of the data package go in different directions: Blaise CARI
data goes one way, management data from the IMS goes to a central SQL Server database, and the Blaise
CAPI data will go yet another way—to be loaded overnight into our DQC system.

Figure 1. High-Level Overview of Data Flow for Our Survey

> back to Table of Contents

5

Just like the IMS is controlling the field interviewers’ options and tasks, the Home Office System is
controlled by the management data in SQL Server. Subprocesses, like DQC, have their own SQL Server
tables and statuses for tasks, but the overall control lies with the central system. This includes the overall
status for each case, as well as status for additional items like separately collected (online or paper) forms.

The DQC system runs its own tasks and also checks the consistency of cases and status within the larger
system.

6. The User Interface
The DQC Data Technicians and DQC Supervisors start their work using our C# application that serves as
the graphical user interface. It shows their workload based on role, and for each assigned issue, they can
see the status overview plus a detail screen with the history of the issue and if needed, they can start the
Blaise instrument from there.

After a Blaise data entry session, we run the same Manipula setups that were executed during the original
loading of the case to ensure no new issues were introduced. They can close out issues and when a case
has no more issues left can clear it for further processing.

When the user first starts the C# program, they will see the cases available to them.

Figure 2. DQC Overview Screen

After selection of the case, the user will be taken to the Case Details Screen, as seen below. As you can
see, this page allows the user to see any information we have about this specific case. In addition to the
data provided on the page, the user can launch the Blaise instrument via a button click. The user may also
select a data viewer to see the case data in its entirety or a predetermined subset of the data.

> back to Table of Contents

6

This screen is also where the user will enter any information about the case they feel is relevant to the
issue. They can also record that all work on the case has been completed.

Figure 3. DQC Case Detail Screen

7. Conclusions
The use of Blaise for data cleaning as well as the original field interviewing can lead to a very powerful
and efficient system, fitting seamlessly between fielding of cases and following tasks like data delivery
and creating preload data for the next round of field interviewing.

Using scheduled automatic processes on (virtual) daemon machines, we can have a steady stream of new
cases to work for our DQC Data Technicians and create a very efficient process using the same Blaise
code for field interviewing and data cleaning.

8. References
Stegehuis, P., & Westat. (2018, October 22). A different approach to Blaise remarks. 18th International
Blaise Users Conference, Baltimore.

> back to Table of Contents

1

Using Paradata to Evaluate the Effect of Changes in the Small
Screen Layout
Elise Alstad and Erdal Kilicdogan, Statistics Norway

1. Abstract
With Blaise 5 multimode capabilities, we can create dynamic and adjustable layouts for different
screens—including layout for small screens—which is important because more respondents are using
smart phones to respond to our surveys. Understanding the best design practices for small screens
becomes essential as we aim to improve our surveys on mobile and to use a mobile-first approach when
designing new surveys. A significant challenge when adapting web surveys initially designed for pen and
paper or PC is to adjust questions in a group that are presented in a grid table to small screens. As grid
tables are unsuitable for small screens, we usually change the presentation of the group questions to item-
by-item questions on small screens. The Quality of Life Survey (QLS) is a web survey that uses grid
tables to present question groups on PC, and between 2022 and 2023, we attempted to improve the small
screen layout for these question groups. We transitioned from a pagination design, where each question is
presented on a single page, to a scrolling design, where several questions are on the same page. Hoping to
have reduced respondent burden and improved user experience by transitioning from pagination to
scrolling, we will assess this hypothesis by comparing paradata indicators of QLS 2022 and 2023. We
have focused on the following indicators in our analysis: (1) previous page actions, (2) response times, (3)
breakoff rates, and (4) route errors. We find lower rates of previous page clicks, route errors, and
breakoffs among mobile respondents in the 2023 QLS compared to the 2022 QLS. These results could
indicate that the scrolling layout might be more suitable for small screens than the pagination layout.
However, we see that we need to do controlled A/B testing of the layout to arrive at a solid conclusion,
and we discuss how we aim to conduct these tests in the future.

2. Introduction
At Statistics Norway, we see that a majority of web responses are completed on small screens in various
web surveys for individual persons (Pettersen & Engvik, 2022; Holmøy & Rossbach, 2021).
Consequently, we aim to have a mobile-first approach when designing new surveys and to enhance our
current web surveys for mobile use. Mobile phones may introduce other sources of survey error, which
are not as prominent on PC. For instance, on small screens, response burden may increase if respondents
have to scroll and zoom to see the questions, or if respondents have to handle small slider scales or radio
items to select their responses. Therefore, it is important that the questionnaire and the layout are designed
such that it is easy for the respondent to respond to the questions on small screens.

Our team has experienced that adapting our web surveys to small screens can be challenging if the web
surveys use several large grid tables. Grid table is a format widely used to present a group of questions
with the same answer categories, as it is an efficient use of space and text. But grids tables are unsuitable
for small screens because they take up too much space, requiring the user to zoom and scroll.
Additionally, the radio buttons in the grid tables are too small for small screens to comply with
accessibility standards. It has been recommended to transform grid questions to item-by-item questions
for mobile (Vehovar et al., 2022), but also on PC, to ensure comparability between mobile and PC
respondents (Revilla et al., 2017). At Statistics Norway, we have, for most web surveys, adjusted the
format for grid questions into item-by-item questions on small screens.

The Quality of Life Survey (QLS), which has been conducted yearly since 2020, uses several grid tables.
Out of 175 question fields in the QLS survey questionnaire, 55 question fields are presented using grid
tables in the PC layout. There are a total of 9 grid tables for 9 question groups in the PC layout of the

> back to Table of Contents

2

survey. These question fields are in groups, but they are presented as item-by-item questions and not in a
grid table in the small screen layout, and we will therefore, for the sake of ease, refer to these specific
questions of the QLS questionnaire as the “question groups” in this article. Between 2022 and 2023, we
attempted to improve the small screen layout of the question groups by changing the presentation from a
pagination design to a scrolling design. We utilized paradata from the Blaise audit trail to evaluate the
effect of changing the layout.

Prior to the 2023 QLS, we assessed how we could improve the small screen layout of the question groups.
Figure 1 shows a question group presented in a grid table in the large screen layout. The same question
group in the small screen layout was presented in an item-by-item format with a pagination design and
one item per page, as shown in Figures 2, 3, and 4. We suspected that the pagination layout might be
unideal for the question groups because the introductory group question text was only visible on the page
with the first question in the group. If respondents forget the group question text in the middle of the
question group, it could be a substantial response burden to go back through previous pages to see the
group question text. We therefore evaluated how we could improve the presentation of the question
groups in the small screen layout.

Figure 1. Screenshot of Quality of Life Survey 2022 and 2023, Chrome Browser

We did a review of the literature to explore mobile alternatives for grid questions. A common mobile
alternative to the grid table presentation is item-by-item in a scrolling layout, where all the group
questions are presented on the same page. De Bruijne and Wijnant (2014) compared different alternative
layouts for grid questions and saw a shorter completion time for a scrolling layout compared to a
pagination layout. Similarly, Mavletova and Couper (2014) found that a scrolling layout seemed to be
more suitable than pagination when assessing breakoff rates, reports of technical problems, and
respondent rating of the questionnaire.

Additionally, we tested scrolling, pagination, and other layout alternatives within the team. Most of the
team members were positive towards changing the small screen layout to a scrolling presentation, as they
found it easier and more preferable to navigate by scrolling rather than having to navigate by using the
“Next” and “Previous” page buttons. Thus, we decided to adjust the small screen layout of the question
groups from pagination to a scrolling layout in the 2023 QLS (see Figures 5, 6, and 7). As emphasized by
Cheung et al. (2016), the layout of a survey can substantially influence how respondents perceive and

> back to Table of Contents

3

respond to the questionnaire. To assess if the scrolling layout is more suitable for small screens than the
pagination layout, we assess four indicators that aim to measure response burden using paradata from the
Blaise audit trail; namely, we compare the level of (1) previous page actions, (2) response times, (3)
breakoff rates, and (4) route errors received between 2022 and 2023 to see if adjusting the small screen
layout could reduce response burden and improve user experience on mobile.

Figures 2–4 show the Quality of Life Survey 2022 in the iPhone 11 Safari browser.

Figure 2. View When Entering the
Page for the First Question, Which
Includes the Group Question Text Figure 3. View of the Next Page

Figure 4. View of Third Group
Question and the Route Error That
Arises When the Respondent
Attempts to Move to the Next Page
without Responding to the Question

> back to Table of Contents

4

Figures 5–7 show the Quality of Life Survey 2023 in the iPhone 11 Safari browser.

Figure 5. Immediate View When
Entering the Page

Figure 6. View in the Middle of the
Page When Two Answers Are
Selected

Figure 7. View in the middle of the
Page When Two Unanswered
Questions Trigger a Route Error

3. Paradata Indicators
Paradata from the Blaise audit trail can provide useful insights into how respondents move through the
questionnaire and can be used to identify issues respondents experience. Paradata from the audit trail
show the respondents’ actions in the survey and the timestamp for each action. Thus, by using paradata,
we can gain a greater understanding in areas of concern and learn how to improve survey questionnaires,
potentially resulting in higher response rates, more accurate responses, and enhanced user experience. In
this article, we use paradata to assess specific indicators that aim to measure response burden. We will
look at (1) previous page actions, (2) response time, (3) breakoff rates, and (4) route errors. By assessing
these indicators on activity within the question groups with the changed layout, we evaluate if changing
from a pagination layout to a scrolling layout can influence how the respondent interacts with the survey
and if it can help to reduce the response burden.

3.1 Previous Page
Previous page can be an especially useful indicator, as it can illustrate issues with the flow of the survey
and identify problems with survey questions. Qualitative user tests at Statistics Norway have found that
respondents go to the previous page for various reasons; namely, if the question is perceived as too

> back to Table of Contents

5

similar to the previous one, the respondent may go back again to the previous question to understand the
difference between the current and the previous question. Additionally, respondents go to the previous
page if they recognize, when presented with a question, that the previous question on another page was
answered incorrectly. Importantly, respondents may click to the previous page because the current
question is missing some information, and the respondent returns to the previous page to retrieve the
missing information.

In the pagination layout, the group question text is shown only on the page with the first field, and the
following group fields are missing important information. This may cause the respondent to return to the
previous page, resulting in a higher number of previous page clicks for respondents in the pagination
layout than in the scrolling layout. We can find the previous page actions in the Actions variable in the
audit trail data. By counting the number of “PreviousPage” actions within the “Action” variable for each
respondent, we can find the average number of times respondents clicked previous page within the
question groups.

Hypothesis 1: Respondents have a higher frequency of previous page actions in the pagination layout
(2022) than in the scrolling layout (2023).

3.2 Response Time
Response time is frequently used to assess respondent behavior and to infer results regarding the quality
of the responses respondents provide. For instance, very short completion time is associated with careless
responding (Leiner, 2019). On the other hand, a long response time may suggest respondents experience
difficulties answering the questions; namely, Antoun et al. (2017) found that mobile respondents spent
more time responding to questions, and at the same time, the answers they provided were less accurate.
Thus, long response time can be related to a greater response burden and can indicate that respondents
experience difficulties.

Time used to scroll versus navigating between pages could provide different completion times. Scrolling
layout has been found to have shorter completion time compared to pagination layout (de Bruijne &
Wijnant, 2014; Mavletova & Couper, 2014). A possible explanation for this is that it is quicker to scroll
than to click to the previous or next page, and each page must also be loaded. Thus, we would expect to
see lower completion time in 2023 with the scrolling layout. If we were to see higher response time for
questions that were changed in the pagination layout, it may indicate that respondents experienced higher
response burden.

Hypothesis 2: Response time is lower in the scrolling layout (2023) than in the pagination layout (2022).

We estimate the total response time for the question groups where the layout was changed using the
TimeStamps in the paradata. Both rounds of the QLS had AutoEnter on the mobile buttons, such that the
respondent is automatically and immediately moved to the next item after providing a response, either by
moving to the next page or by auto focusing the view on the next question on the page.

3.3 Breakoff
Breakoff refers to when respondents initiate a survey but do not complete the entire questionnaire. A
survey breakoff that occurs before completion or before a predetermined limit of the number of questions
to be answered is often categorized as nonresponse. Researchers point out that respondent-related or
survey-related aspects can cause increasing breakoff rates. For example, lack of motivation, higher task
difficulty, and technical problems are some reasons which can increase the probability of breakoff
(Steinbrecher et al., 2015).

> back to Table of Contents

6

Analyzing breakoff rate is an important assessment of survey quality and user experience. If respondents
feel the response burden is very high or experience issues, they could decide to not complete the survey.
On mobile, the respondents may become frustrated when they have to scroll and zoom to see the question
text or if the question text is hard to read on the small screen (Cheung et al., 2016). Vehovar et al. (2022)
compared the breakoff rates of different layouts for mobile grid alternatives and saw a higher breakoff
rate in the pagination layout in comparison to a scrolling layout and other layout alternatives. We
therefore expect that the pagination layouts will result in higher breakoff rates than the scrolling layouts.
We consider breakoff rate an important indicator because a difference in breakoff rates may indicate that
changing the layout can reduce the response burden. In our analysis, we assess breakoff rates by finding
the number of respondents that break off the survey within the question groups with the changed layout.

Hypothesis 3: The breakoff rate in the pagination layout (2022) is higher than in the scrolling layout
(2023).

3.4 Error Messages
One possible disadvantage with a scrolling design is that respondents may be more likely to miss a
question when there are several questions on one page. For instance, de Bruijne and Wijnant (2014) found
an indication of more item nonresponse in the scrolling layout than in the pagination layout; however, the
difference was not significant. Mavletova and Couper (2014) did not find any difference in item
nonresponse when comparing pagination and scrolling layouts.

In the QLS, response is required to move to the next page, and it is therefore not relevant to assess item
nonresponse. Respondents who missed a question would receive a route error informing them to reply to
the question before moving on to the next page (see Figure 7). Thus, if it was easier to miss a question in
the scrolling layout, we can determine this with the frequency of route errors experienced. Moreover, in
the scrolling layout, if respondents tried to move to the next page when they had missed a question, they
would have had to scroll back up to reply to the question and then scroll down to move to the next page.
This may have been a substantial response burden, especially in question groups with many fields. In the
pagination layout, as each item is on a single page, feedback is more immediate if the respondent misses a
question.

To examine if it was easier to miss a question in the scrolling layout, we assess the average number of
route error messages received per respondent and the share of respondents who received at least one route
error. From the audit trail, we find route errors using “Route” in the variable “ErrorKind.”

Hypothesis 4: There are more frequent experiences of route errors and a higher share of respondents
receiving route errors at least once in the scrolling layout (2023) than in the pagination layout (2022).

4. Methodology
The Quality of Life (QLS) survey has a sample size of 40,000 people each year, and the sample is drawn
to be representative of the Norwegian population aged 18 and above. Using paradata and defining
complete response as responding to the last question in the survey, the response rate was 38% in 2022 and
45% in 2023. Between the two years, the questionnaire remained very much the same, except for the
change in the small screen layout. However, the 2022 QLS and the 2023 QLS used different contact
methods, which may have contributed to the increased response rate in 2023. In 2022, we sent the
respondents the invitation to the survey and the link to the questionnaire via both email and SMS
(Pettersen & Engvik, 2022). In 2023, we transitioned to using Altinn, the digital mail inbox where public
agencies can communicate with individuals and businesses. In Altinn, individuals will, for example,
receive information about their tax returns. Users are required to use two-factor authentication to log in to
Altinn. In 2023, the invitation to the survey and the link to the questionnaire were sent in Altinn.

> back to Table of Contents

7

Respondents would get notifications about receiving an Altinn letter from Statistics Norway and
reminders about the survey via both SMS and email, but the link to the survey was only sent in Altinn.

By comparing mobile respondents between the two years, this is essentially an observational study that
will have limitations regarding self-selection effects. In particular, the contact channel where respondents
receive a direct link to the questionnaire might influence the choice of device. For example, de Bruijne
and Wijnant (2014) and Mavletova and Couper (2014) found that sending the survey invitation and the
link to the questionnaire via SMS led to a higher share of respondents choosing mobile compared to
sending them via email. Thus, changing the channel where respondents received the direct link to the
survey could influence whether they choose to complete the survey on mobile or on PC. In the QLS 2022,
when respondents received the link via SMS and email, 72% of completed surveys were done on mobile,
while only 54% were done on mobile in 2023 (see Table 1). As the different contact channels may
influence the respondents’ choice of device, it may also influence the composition of the net sample on
mobile. We see a difference in the composition of the mobile respondents between the two years,
especially regarding age, as shown in Table 1. Respondent-related factors could have an impact on the
measures we are analyzing; for instance, Zhang et al. (2014) found a relationship between speeding and
straight-lining for people with lower education levels, and also for gender. Thus, the different mode of
contact between the years could lead to different people choosing to use mobile to respond to the survey,
resulting in two different mobile samples between the years. We attempt to reduce confounding effects by
conducting exact matching on demographic variables, which we will describe further in the Data
Preparation section. But the limitation of not conducting a randomized controlled experiment is
something we recognize and will discuss further in the Limitations section.

> back to Table of Contents

8

Table 1. QLS 2022 and 2023 Descriptive Statistics of Sample

Year 2022 (Pagination Layout) 2023 (Scrolling Layout)

2022 vs 2023
(Pagination
vs Scrolling)

Category N
Completions

(% of N)

Mobile
Completions

(% of
Completions) N

Completions
(% of N)

Mobile
Completions

(% of
Completions) X2 (df)

Gender 13.434***
(df=1)

Male 20,385 36 65 20097 43 47
Female 19,615 40 79 19903 47 64
Age 179.710***

(df=4)
18-24 4,209 31 85 4,243 40 76
25-44 13,694 34 81 13,760 43 68
45-66 13,975 45 68 13,854 52 49
67-79 5,814 42 60 5,902 45 37
80+ 2,307 19 56 2,241 20 32
Education 20.006***

(df=3)
Elementary
school or lower

9,028 24 80 8,810 30 66

Upper
secondary
school

15,467 36 73 15,445 45 55

University/
University
college

13,724 51 69 1,3724 57 53

Not stated 1,781 18 71 1,226 29 51
Total 40,000 38 72 40,000 45 55

*p < 0.05; **p <0.01 ***p<0.001.

5. Data Preparation
We removed sessions with contradicting screen size and layout, as well as respondents with missing
information in LayoutSetName. We also excluded respondents that replied to the survey with two
different LayoutSetNames. As the interest of the analysis is mobile devices, we will only examine
respondents with a small screen layout, and therefore exclude PC respondents.

When assessing breakoff rates, we include all respondents who started the survey by responding to the
first question. For the other indicators, we aim to assess activity on the question groups, and we therefore
filter to include respondents who responded to at least one of the fields in the middle of the page. This is
to ensure that the respondents included in the analysis responded to all the selected question groups we
assess. These samples are the foundation of the matching process, which we describe later.

Additionally, we filtered on the middle questions in the question groups because of missing paradata. We
were informed by the Blaise support team that missing paradata could occur because of the workings of
the Safari browser. As the Safari browser does not always focus on items being clicked and as the audit
trail relies on focus being triggered, actions from the Safari browser can be missing. We have not been
able to effectively establish if a respondent is unaffected by missing paradata, as absence of activity is
hard to determine. Because a substantial share of respondents uses the Safari browser and the missingness
does not apply to all observations using this browser, we did not want to exclude all Safari browsers from

> back to Table of Contents

9

the analysis. Still, we noticed a pattern for missing paradata: activity on the first item was registered but
not on the subsequent fields within a page. Therefore, we only included respondents who had responded
to at least one of the fields in the middle of the page. As part of the sensitivity analysis, which we discuss
in the Results and Data Analysis section, we also ran the analysis while excluding Safari browsers to see
if this influenced the results.

As we mentioned in the Methodology section, this is an observational study, and the composition of the
mobile samples might be different between the two years. We therefore conducted exact matching to
adjust for possible confounding effects due to the different contact methods. The objective of the
matching was to construct a subsample of the mobile respondents where the demographic composition
would be identical between the two years. To do the exact matching, we stratified the sample of mobile
respondents based on the categorical demographic variables gender, education, and age. The categories
are shown in Table 4 in the Appendix. The stratification provided us with a total of 40 strata, yet we only
used 36 of them because not all strata contained mobile respondents in both 2022 and 2023. In each
stratum, we found which year had the smallest number of mobile respondents in the stratum and used that
as the benchmark sample size for the stratum. Then for each stratum, we selected a random sample from
the year with the highest number of mobile respondents in the stratum. For the breakoff rate analysis, the
foundation for the matching process was respondents who answered the first question in the survey. For
the other indicators, we selected respondents who responded to all the group questions with the changed
layout. After the matching process for breakoff rates, we ended up with 9,640 respondents, using 82% of
the mobile respondents from 2022 and 96% from 2023. The matching process for the other indicators left
us with 8,371 respondents, using 83% of the mobile respondents from 2022 and 94% from 2023 (see
Tables 4 and 5 in Appendix).

For each analysis, we excluded respondents with extreme values from the effective sample. To calculate
response time, we used the TimeStamps in the paradata and calculated the time it took from one observed
activity until the next activity for each respondent, and then summed up the total time of activities within
the question groups for each respondent. We excluded activities that were completed 15 minutes or longer
after the previous action, to exclude time spent on not answering the survey. Respondents with the top 5%
longest response times were excluded. When counting the frequency of previous page clicks and route
errors received per respondent, we removed the top 1% of respondents to avoid extreme values.

As we are interested in the group questions where the layout changed, the basis of the analysis is
respondent activity within the 51 fields in the 8 question groups that had the layout changed from
pagination to scrolling. Therefore, the results of the indicators are related to activity in the group
questions with the changed layout, and not the whole survey.

5.1 Results and Data Analysis
Table 2. Paradata Indicators of Mobile Respondents

Year 2022 (Pagination Layout) 2023 (Scrolling Layout)
2022 vs 2023

(Pagination vs Scrolling)

Indicator Average Std N Average Std N Min - Max p-value
Previous Page
actions (count)

0.92 1.50 8,224 0.07 0.34 8,370 0 – 8 ***

Route Errors
(count)

1.40 1.97 8,223 0.21 0.65 8,369 0-11 ***

Response time
(seconds)

342

125 7,984 343 127 7,920 26-724 Not
significant

*p < 0.05; **p <0.01 ***p<0.001, Mann-Whitney U-test.

> back to Table of Contents

10

In 2022, the average times respondents clicked previous page was 0.92 (see Table 1), so we can roughly
say that respondents, on average, clicked to the previous page once, but not all respondents clicked to the
previous page. The average number of previous pages per respondent within the question group dropped
from 0.92 in 2022 to 0.07 in 2023, which supports Hypothesis 1. Naturally, with more pages in the
pagination layout than in the scrolling layout, we would expect to see more previous page actions. But
considering that having to click previous page increases the response burden, the decrease may suggest
improved user experience in the scrolling layout. While we do not have data to see if respondents scrolled
up and down on the scrolling layout, we use response time to indicate the total time it took respondents to
navigate between the questions. Should the scrolling layout provide better navigation and possibly
reduced response burden, we should also expect to see a reduced response time. But contrary to
Hypothesis 2, response time did not decrease in 2023 with the scrolling layout. The response time in the
question groups was essentially the same between the years. Even though respondents received fewer
route errors and did fewer previous page clicks in 2023 than respondents in 2022, the response time was
not shorter.

Table 3. Paradata Indicators of Mobile Respondents

Year 2022 (Pagination Layout) 2023 (Scrolling Layout)
2022 vs 2023

(Pagination vs Scrolling)

Indicator
Count

(% of N) N
Count

(% of N) N p-value (df)
Experienced at least
one Route Error

4,664 (56%) 8371 1,227 (15%) 8,371 *** X2 (df= 1)

Breakoff 471 (4.9%) 9640 357 (3.7%) 9,640 *** X2 (df= 1)
*p < 0.05; **p <0.01 ***p<0.001.

Interestingly, the average number of times respondents received route errors decreased from 1.40 in 2022
to 0.21 in 2023 (Table 2). Similarly, the share of respondents receiving at least one route error within the
survey question groups was substantially reduced, from 56% of respondents having at least one route
error in 2022 to 15% in 2023. The lower share of experienced route errors in the scrolling layout
compared to the pagination layout contradicts Hypothesis 4. In fact, respondents were less likely to miss
questions in the scrolling layout than in the pagination layout.

When analyzing breakoff rates within the questions with the changed layout, we see a similar trend as
with the route error. Out of the respondents that started the survey, 4.9% broke off the survey in the
question groups in 2022, while only 3.7% did the same in 2023, supporting Hypothesis 3. This can imply
that respondents experienced higher task difficulty in the pagination layout than in the scrolling layout.
Seeing that respondents experienced less route errors and were less likely to break off in 2023 than in
2022, it can indicate that respondents experienced lower response burden and higher willingness to
complete the questions in the scrolling layout than with the pagination layout.

To test if the difference between years on the indicators we analyze would be due to changing the layout
and not due to other factors, we completed some sensitivity analyses with different model inputs.
Comparing PC respondents between 2022 and 2023, there is no significant difference between the years
for any of the indicators assessed. Moreover, to check that our analysis was not affected by missing
paradata, we ran the analysis while excluding sessions from the Safari browser, which is where the
missingness occurs, and saw the same significant patterns as when including sessions from the Safari
browser. Importantly, we assessed activity on all other questions where the layout was unchanged
between the two years, and we saw the same significant patterns: more frequent previous page clicks and
route errors received, lower breakoff rate in 2023 compared to 2022, and even significantly lower
response time in 2023.

> back to Table of Contents

11

5.2 Limitations
According to our assumption that any changes between the years in the paradata indicators we analyzed
would be due to the layout, we should not see the same pattern in the indicators on questions with no
change in the layout. However, when we ran the sensitivity analysis, we still saw the same pattern:
reduced frequency of previous page clicks, less experience of route error, and lower breakoff rate among
mobile respondents in 2023 but on questions where the layout was the same as in 2022. Thus, the
difference in the indicator’s measures cannot be isolated to changes in the layout. This limitation is
caused by our study design and may be exacerbated due to the different contact channels. We attempted
to control for confounding effects by conducting exact matching on sociodemographic variables. Still, it
is not possible to control for all possible confounding effects related to the choice of device.

Moreover, contact methods may influence the context and environment for when and how respondents
reply to a survey; namely, distracting environments and multitasking while responding to a survey may
reduce commitment and ability to concentrate on the questions (de Bruijne & Oudejans, 2015). There
might be reason to suspect that the change from sending the survey link via SMS and email to using
Altinn can influence when and how respondents reply to the survey. As Altinn is a place where
respondents expect to receive important communication from public authorities, they might wait until
they are in a familiar environment without distractions before they open the Altinn letter from Statistics
Norway. In comparison, when receiving the questionnaire link directly in an SMS or an email,
respondents might be more likely to open the survey in distracting environments or on the go. If more
mobile respondents were in less distracting environments and in a different mindset when replying to the
2023 QLS, this can have a confounding effect on the indicators assessed here. Thus, we recognized from
doing the sensitivity analysis that we would need to do randomized controlled experiments to determine
the effect of changes in the layout.

> back to Table of Contents

12

6. Discussion
We hypothesized that the pagination layout in 2022 would have longer response times, as other research
found that response time in a scrolling layout was comparatively shorter (de Bruijne & Wijnant, 2014;
Mavletova & Couper, 2014). However, the response time in the question groups remained the same in
2022 and 2023. Considering that respondents received more route errors and returned more frequently to
the previous page in the pagination layout, but the response time is the same, this suggests that even if
these actions may have broken the survey flow, it did not have an impact on the response time. However,
in the pagination design, we can clearly identify when respondents return to the group question text on the
first page, while in the scrolling layout, we cannot see if respondents have to scroll to the top of the page
to see the text, thus breaking the survey flow.

We saw that the frequency of previous page clicks and route errors per respondent decreased between
2022 to 2023 when changing the layout of the question groups from pagination to scrolling. Similarly,
breakoff rates within the questions groups were lower in 2023 compared to 2022. Using route errors as an
indicator for how easy it was to miss questions, we found that in 2023, fewer respondents experienced a
route error at least once and the average number of time respondents received route errors decreased,
which may indicate that the scrolling layout is not more prone to making respondents miss a question.
Our results showing reduced frequency of route errors, previous page clicks, and lower breakoff rates
from 2022 to 2023 may suggest that the scrolling layout is more suitable for small screens. However, as
we have pointed out in the Limitations section, our study design is not a randomized controlled
experiment, and we can therefore not be sure whether the improvements are due to the changes in the
layout.

Still, we found this analysis useful to start utilizing paradata, and we have gained a more thorough
understanding of how we should conduct assessments in the future. Mobile phones are increasingly
becoming more popular, and we ought to understand how to improve user experience on small screens
and ensure high data quality from the responses. We have started to think about how we can conduct A/B
testing to assess small adjustments in the layout using paradata. Importantly, as there are various
alternatives for presenting grid questions on mobile (see Vehovar et al., 2022), we hope to conduct future
experiments with different layouts and improvements using the knowledge learned from this analysis.
Regarding improving the layout further for a better user experience, we would like to assess how
respondents experience AutoEnter in our surveys, as well as differentiating the presentation of multiple-
choice buttons and single response answer buttons.

In terms of improving how we analyze paradata, we hope to develop more indicators to assess user
experience and survey quality. This article focused mainly on the objective response burden of the survey,
but an important consideration is to assess subjective user experience and the data quality of the
responses. Indicators for data quality include straight-lining, careless responding through random
responding, inconsistent answers, inaccurate responses, and response order effects. For instance, when
assessing response order effects, Liu and Cernat (2018) found that the mean shifted in the direction to the
responses on the left of the screen for mobile respondents for 9- and 11-point scales. We would therefore
like to assess how questions with different scales and the number of questions in one group can be
influenced differently when adjusting the layout.

> back to Table of Contents

13

7. References
Antoun, C., Couper, M. P., and Conrad, F. G. (2017). “Effects of mobile versus PC web on survey
response quality: A crossover experiment in a probability web panel”, Public Opinion Quarterly, 81(S1),
pp.280-306.

Cheung, G., Piskorowski, A., Wood, L. and Peng, H. (2016). “Using Survey Paradata”, Presented at the
17th International Blaise Users Group Conference, The Hague, Amsterdam

de Bruijne, M., and Oudejans, M. (2015). “Online surveys and the burden of mobile responding”, Survey
Measurements: Techniques, Data Quality and Sources of Error, pp.130-145.

de Bruijne, M., and Wijnant, A. (2014). “Improving response rates and questionnaire design for mobile
web surveys”, Public Opinion Quarterly, 78(4), pp.951-962.

Holmøy, A. and Rossbach, K. (2021) “IKT i husholdningene 2020” (Notater 2021/4). Statistisk
sentralbyrå. https://www.ssb.no/teknologi-og-innovasjon/artikler-og-
publikasjoner/_attachment/445604?_ts=177a4b71958

Leiner, D. J. (2019). “Too fast, too straight, too weird: Non-reactive indicators for meaningless data in
internet surveys”, Survey Research Methods, 13(3), pp.229-248.

Liu, M., and Cernat, A. (2018). “Item-by-item versus matrix questions: A web survey experiment”, Social
Science Computer Review, 36(6), pp.690-706.

Mavletova, A., and Couper, M. P. (2014). “Mobile web survey design: scrolling versus paging, SMS
versus e-mail invitations”, Journal of Survey Statistics and Methodology, 2(4), pp.498-518.

Pettersen, A and Engvik, M. (2022) “Livskvalitetsundersøkelsen 2022” (2022/35). Statistisk sentralbyrå.
https://www.ssb.no/sosiale-forhold-og-kriminalitet/levekar/artikler/livskvalitetsundersokelsen-
2022.dokumentasjonsnotat

Revilla, M., Toninelli, D., and Ochoa, C. (2017). “An experiment comparing grids and item-by-item
formats in web surveys completed through PCs and smartphones”, Telematics and Informatics, 34(1),
pp.30-42.

Steinbrecher, M., Roßmann, J., and Blumenstiel, J. E. (2015). “Why do respondents break off web
surveys and does it matter? Results from four follow-up surveys”, International Journal of Public
Opinion Research, 27(2), pp.289-302. https://doi.org/10.1093/ijpor/edu025

Vehovar, V., Couper, M. P., and Čehovin, G. (2022). “Alternative layouts for grid questions in PC and
mobile web surveys: An experimental evaluation using response quality indicators and survey estimates”,
Social Science Computer Review. https://doi.org/10.1177/08944393221132644

Zhang, C., and Conrad, F. (2014). “Speeding in web surveys: The tendency to answer very fast and its
association with straightlining”, Survey Research Methods, 8(2), pp.127-135.
https://doi.org/10.18148/srm/2014.v8i2.5453

> back to Table of Contents

14

8. Appendix
Table 4. QLS 2022 and 2023 Sample Matching for Previous Page Actions, Route Error, and Response Time

Year
2022

(Pagination layout)
2023

(Scrolling layout)
2022/2023

Matched samples

Category N (% of Total) N (% of Total) N (% of Total)
Gender

Male 4,329 (43%) 3,586 (40%) 3,133 (40%)
Female 5,703 (57%) 5,311 (60%) 5,058 (60%)

Age

18-24 1,082 (11%) 1,221 (14%) 1,056 (13%)
25-44 3,564 (36%) 3,767 (42%) 3,410 (41%)
45-66 3,958 (39%) 3,078 (35%) 3,078 (37%)
67-79 1,232 (12%) 722 (8%) 720 (9%)
80+ 196 (2%) 109 (1%) 107 (1%)

Education
Elementary school or lower 1,674 (17%) 1,659 (19%) 1,450 (17%)
Upper secondary school 3,720 (37%) 3,386 (38%) 3,086 (37%)
University/University college 4,426 (44%) 3,680 (41%) 3,680 (44%)
Not Stated 212 (2%) 172 (2%) 155 (2%)

Total 10,032 8,897 8,371

Table 5. QLS 2022 and 2023 Sample Matching for Breakoff Rates

Year
2022

(Pagination layout)
2023

(Scrolling layout)
2022/2023

Matched samples
Category N (% of Total) N (% of Total) N (% of Total)
Gender

Male 5,183 (44%) 4,111 (41%) 3,916 (41%)
Female 6,584 (56%) 5,907 (59%) 5,724 (59%)

Age
18-24 1,383 (12%) 1,465 (15%) 1,355 (14%)
25-44 4,339 (37%) 4,317 (43%) 4,052 (42%)
45-66 4,446 (38%) 3,334 (33%) 3,334 (35%)
67-79 1,364 (12%) 780 (8%) 778 (8%)
80+ 235 (2%) 122 (1%) 121 (1%)

Education
Elementary school or lower 2,193 (19%) 2,028 (20%) 1,905 (20%)
Upper secondary school 4,293 (36%) 3,761 (36%) 3,516 (36%)
University/University college 4,961 (42%) 4,007 (42%) 4,003 (42%)
Not Stated 320 (3%) 222 (2%) 216 (2%)

Total 11,767 10,018 9,640

> back to Table of Contents

1

Table Layouts for Editing
Charles Less, United States Department of Agriculture – NASS

Tables are a versatile tool for organizing and presenting data. They are used to store, sort, filter, and
analyze data. Tables are used to present research findings, compare and contrast data, and summarize
complex information. Navigating the intricate landscape of tables is a critical skill for editors in any
professional setting. Whether you’re dealing with financial spreadsheets, scientific data, or editorial
schedules, tables serve as a structured method for displaying complex information in an easily digestible
format. As simple as they may appear, tables require a keen eye for detail, clarity, and coherence to
maximize their impact and usefulness. For USDA/NASS’s purposes, we use tables to collect data by
topic/agricultural commodity and for editing data by the same standard.

1. Blaise 4 Tables at a Glance
Ever since Blaise 4 was implemented for USDA/NASS, tables have served a very useful purpose for our
editing. Tables in Blaise 4 allow for organizing data more efficiently, allow more fields on a page, and
assist our statisticians in editing/reviewing data for various commodities in one page. In Blaise 4, we had
the luxury of the Popup Record Error Listing and Involved Fields, along with our table, to quickly and
effectively edit/review data. Figure 1 shows an example of the use of tables in Blaise 4. Here, data are
collected on the pounds sold, average price per pound, and total dollars received for various types of
tobacco sold, either through contract or through auction houses. Notice from the figure, developers did
not have to contend with the table spacing to fit a check or signal within the rows or at the table level.

Figure 1. Table Editing Environment in Blaise 4

> back to Table of Contents

2

The code to implement a table is straightforward. Tables in Blaise 4 are in full use, and one merely had to
apply it in the code by declaring the table (TABLE tbPrice) and adding the appropriate blocks (bInquiry)
within the table, and then efficient tables for Interviewing and Editing were ready. Figure 2 below shows
an example of how the table storing the tobacco information is stored by type and by point of sale.

Figure 2. Table Code Blaise 4: Declaring a Table

For editing in Blaise 4, the Popup Record Error Listing and Involved Fields are great for editors to handle
error review. Along with the table, space was not an issue for reviewing errors. Users could easily resolve
warnings, and the error listing allowed quick access to the ‘involving’ field. With Blaise 5, the missing
error listing box posed a challenge.

2. Enter Blaise 5
Developing Blaise 5 tables with the Layout Editor took considerable effort to format the tables in a more
logical presentation to our editors. Equipped with the samples provided by Statistics Netherlands, we
used/borrowed some work from the samples to create our table layouts and planned to create a
documentation for our developers to use when implementing tables in their own projects. As with many
things at NASS, much customization is required between different surveys.

> back to Table of Contents

3

USDA/NASS conducts many regional and national surveys during the course of a year, and there are
many opportunities to implement tables. We decided to implement tables in Blaise 5 for editing a small
survey that occurs twice a year and has a small sample. The survey was able to implement a table, and
editors had a small enough sample to meet their due date for finishing the editing and making corrections.

The table layout developed would only have 10 rows and a small number of columns. Edits would exist
involving fields in these tables (groups) and display for calculation issues or violating our external edit
limits, which are also used in this survey.

For Blaise 5 coding, we start with the Group declaration. See Figure 3. Once the Group is coded, the table
template(s) are at our disposal. The example shown in the figure comes from a survey designed to
forecast the number of turkeys raised in the United States based on poult placement at the state and
national level. There are operations that are large enough that they report. In this table, each row can be
used to report poult placement by state. Each row has the same number of columns, as the questions are
the same for each state.

Figure 3. Blaise 5 Code for Setting Up Table Layout

> back to Table of Contents

4

Figure 4. Table in Layout Tab

The approach taken was to set the Layout instructions for the table using the Layout tab in the Control
Centre and the Blaise Resource Editor, then start with the first row of that table. Depending on the
uniformity of that row in relation to the following rows in the questionnaire we use (Figure 4), one could
make use of the first row’s layout instructions and parameters being set in the layout editor, and then cut
and paste the other rows accordingly within the instrument’s Source tab in the Control Centre.

Figure 5. Uniform Table and Small Number of Columns

> back to Table of Contents

5

3. Trials and Tribulations
When first using the table layout, we started going through each row using the Layout tab and setting the
properties. As Blaise 5 developers know, if you strictly use the Layout tab and the Blaise Resource Editor,
the development could be a very long task to complete a layout. As shown in the Figure 5 table and
columns, we could use the Layout tab and get away with setting properties. We only had to set the layout
instructions and parameters for 10 rows. Even with 10 rows, this was tedious work within the Layout tab
of the Control Centre when setting the properties in the Layout tab and having it sync to the code in the
Source tab.

As we gained more knowledge of adjusting the rows to our liking, we could synchronize the layout for
that first row to the source and then use that first row to cut and paste. Or in this case, since it was an
array, one merely had to edit the first row to be a generic layout instruction for all rows for this survey.

In the code, we were able to use that first row to create instructions for that row (State [101]), and then
adjust it with an open set of brackets for all rows in the Group. See Figures 6, 7, and 8.

At the Block level (that is called from the Group code):

Figure 6. Row and Cell Level Layout Instructions

> back to Table of Contents

6

At the Group code level (displaying the open set of brackets to handle every row):

Figure 7. Table-Level Layout Instructions

At the Main Block level (where Group is located):

Figure 8. Main Bloc Layout Instructions

4. Displaying Error Text in Tables
As previously mentioned, USDA/NASS relied heavily on the Popup Record Error Listing and Involved
Fields to handle error displays, as well as using the jump to fields to resolve CHECKS with Blaise 4.

As developers/layout designers, we had to make ‘space’ for error messages within the table environment.
Blaise 5 allows developers to display checks and signals at the table level and at the row level. See
Figures 9 and 10 We have used both for recent surveys and the results are mixed. Showing too many of
the same errors caused editor fatigue. An editor can be overwhelmed with row and table both displayed,
giving the appearance of having a lot of editing work to do. Also, because these tables can display many
checks/errors, the table-level checks/errors could not fit within a user’s screen. As these checks/errors
were resolved, the listings at the bottom of a table were gradually reduced.

Figure 9. Table/Group Error Listing Display Settings in Layout Tab

> back to Table of Contents

7

Figure 10. Row-Level Error Listing Display Settings in Layout Tab

When the table-level errors settings were used, the error displayed at the bottom of the table. See Figure
11. When the row-level error settings were adjusted, the errors for each row would appear. See Figure 12.

Figure 11. Table-Level Error

Figure 12. Row-Level Errors

5. Problems with Complex Tables
With our limited success in setting up editing with a small survey, an attempt was made on a survey with
large tables and a lot of columns. Hawaii has a Tropical Specialties Survey with a multitude of crops
grown. See Figure 13. We wanted to use this specific survey to see how the edit would render. My
attempt to adjust to large tables caused issues with our editors seeing the big picture. For our situation, the
number of columns would not fit our layout appearance. One could resolve long tables with a multitude of
crops with scroll bars, but it had a difficult time adapting to columns. See Figure 14. We implemented
horizontal scroll bars, but the error listings involving the crop label and columns for processing were not
helpful for the editor. It was recommended to insert a single column table, but time ran short to institute

> back to Table of Contents

8

that table, and even if that table was inserted, it doesn’t guarantee that the crop name row would align
with the data.

Figure 13. Hawaii Tropical Specialties

Figure 14. Table Edit Rendering

> back to Table of Contents

9

Figure 15. Continuation of Table Rendering

6. Shortcomings (The Troubles with Tables)
Table editing continues to be slow. Saving updates can take several seconds per field. Additionally,
USDA/NASS utilizes a Generic InDepth data storage type pointing to MySQL, and we are left wondering
if server contact can also be a concern. We also operate within a Citrix environment, and we wonder if
that could also create issues. It was recommended that we change our settings to have changes saved at
the page level to handle this lag in saving updates; however, there are calculations that need to take place
to make sure some columns total correctly at that page level. We initially instituted a page save through
the Data Entry Settings Tab, but got into trouble when editors made updates, thought they were clean, and
saved the form, resulting in the record’s ValidationStatus appearing as dirty.

Because we no longer have the Popup Record Error Listing and Involved Fields, we had to resort to a
layout page that displays the ‘error list box.’ Jumping from the error list box to an ‘involving field’ that is
a table field is also a slow process and can take several seconds to land on said field.

The lag in table saving can pose challenges to our editors, as much of our data comes in toward the end of
a survey. We give our enumerators in the field and our statisticians a window to account for data, and
sometimes that window is stretched due to weather conditions or farm operator availability. Editing a
large amount of data stored in tables like these at the end of that short survey window can pressure our
statisticians.

Space is also an issue. One of the surveys that we implemented tables on was a survey that had many
sections and columns. Due to lack of space, we had wanted to use a freeze column, but the layout does
not have that to implement. We did have conversations with Statistics Netherlands, and since the table
layout is not a not a true table, it does not have that column freeze attribute. To compensate for the lack of
a hold/freeze column, we had to resort to the use of a horizontal scroll bar to allow editing for some
columns that needed to be edited, and this caused some consternation as the reviewers/editors lost track of
what crop they were reviewing.

7. Conclusion
In this paper, we have discussed the use of table layouts for editing data. We have seen that Blaise 5
offers much flexibility to display tables in very useful and appealing ways. We can use tables effectively
to display reported data, as well as metadata, and we are able to effectively use small tables for editing.
We do continue to struggle with larger tables where there are large numbers of rows and columns that

> back to Table of Contents

10

require a lot of editing for cell values for a row. Our agency hopes that the software will evolve to be
more efficient at allowing field updates. If not, our developers will need to find better ways of handling
updates. Alternatively, our agency can rethink how Blaise 5 fits into our data analysis. Finally, we can
also seek input from other organizations on how they effectively use table layouts with their editing
strategies.

> back to Table of Contents

1

How Blaise 5 Improves Table Presentation
G J Boris Allan and Stéphane Ridoré, Westat

Presenter: Siu Chong Wan

As we look across versions of Blaise, the presentation of tables has continued to evolve. When we first
encountered Blaise 3, one of our first questions concerned rosters and their implementation. The answer
was Blaise tables, and we used tables successfully in both Blaise 3 and its successor, Blaise 4.
When Blaise 5 was introduced, we could use additional forms of tables, and one of the most important for
our work is known as Option Tables. This paper discusses ways to work with tables in Blaise 5. We found
that not only could we massage standard tables but also that we could extend our applications to various
forms of option table by changing the nature of tables using the resource database (.blrd file).

1. The Basic Blaise Cross-Tabulation Table

The Blaise 5 samples have a variety of instruments that use tables, for example the (growing) roster-style
table:

This is a growing table, but that is incidental. We have embellished this table by adding on an extra
column, the one labeled “Race.” The race question is based on categories used in an earlier CAPI
instrument in Blaise 4.8 and is used only as an example. Race questions can become complex (Blaise 4
was actually a SET OF), and so in the original interview, the CAPI interviewer had a good deal of extra
information that was not read aloud to the respondent. Here is a version of the Blaise 4.8 CAPI translated
to Blaise 5.13:

Race
"For this survey, Hispanic origins are not races. <newline> <newline>What is your
race? Please select one of the categories on this card. <newline><newline>ENTER ALL

> back to Table of Contents

2

THAT APPLY."
/ "Race"
: (TRWhite (1) "WHITE" "BLANCA",
 TRAfrAmer (2) "BLACK OR AFRICAN AMERICAN" "NEGRA O AFROAMERICANA",
 TRAmInAlk (3) "AMERICAN INDIAN OR ALASKA NATIVE" "INDIA AMERICANA
One drawback in the Blaise 5 CAPI version above, therefore, is the lack of interviewer instructions we
could have with Blaise 4.

1.1 A Simple Roster Version

A more extensive example of a roster in Blaise 5.13, based on the style of rosters in Blaise 4.8, is:

Note the horizontal scroll bar—very useful for wide tables—but there are no instructions for the list of
types of Hispanic ethnicities.

1.2 The Simple Roster Version with an Extra Display

We can extend the roster with information for the interviewer and, in this case, a mixture of English and
Spanish. The English parts of the question text (mainly in CAPS) are directions to the interviewer, and the
Spanish text is to be read to the respondent. This is a fairly simple extension of the appropriate master
page template:

> back to Table of Contents

3

A version totally in English is:

Note the purple highlight to show which cell is being answered.

> back to Table of Contents

4

2. The Blaise Options Table

We have—for many studies—a particular need for a type of table that is not a roster-style table, that is,
we need an options table. The Blaise 5 samples have an example that is a combination of the two table
types (roster and options):

Each subject topic (say, credit cards for business) has two associated questions: the first is a Yes/No
question (two options) and the second is a simple numerical question. Whereas with, say, the question
about Hispanic Origin in the roster (Yes/No with perhaps DK/RF) we used a drop-down list, in this
options table example, we showed the two options in two columns. Options tables are used most
frequently when we have many stimuli/topics and we want to have the options in a more convenient
presentation.

2.1 Initial Views

The rest of this paper investigates two types of options table (many versions are possible) and how we
have extended functionality to improve understanding of what is required. Based on some of our
methodologists’ findings and some of our clients’ requirements, we have extended functionality: all these
changes are elaborations of basic templates extended to incorporate new features in the .blrd. The
elaborations are dependent on these requirements.

Whereas rosters are principally a CAPI approach, options tables have applicability for CASI, such as a
questionnaire on a browser.

2.1.1 The Standard Options Table
This is a standard display.

> back to Table of Contents

5

If you click/touch/select some buttons on the above table, you can add data:

You selected “Strongly agree” for lung cancer, skipped a row, and then selected “Disagree” for blood
sugar. As soon as you leave an empty row and select the next row, the Blaise 5 normal nonresponse
behavior (defined in Settings) kicks in. “Normal behavior” is to not show a nonresponse button until the
next field on route receives focus.

> back to Table of Contents

6

If you select the next-page button, then you find:

If we had any more rows, we might find that the back and next buttons would drop off the bottom of the
view and disappear. There are studies for which the number of rows far exceeds the number we have
above and, to show disappearing rows and buttons, we make the above window smaller:

> back to Table of Contents

7

There is a scroll bar so that we can see lower rows, but if the rows and navigation buttons are shown, then
we cannot see the question or the column headings:

2.1.2 The Growing Options Table
We have already come across an expanding (or growing) table, and here is an example based on a study’s
requirements:

> back to Table of Contents

8

Select buttons for the first rows, that is, select a button then select next, and so on.

Because of the way that the appearance of rows is controlled in the Blaise code:

 ROW1
 IF ROW1 <> EMPTY OR ROW1.IsVisited = 1 THEN
 ROW2
 ENDIF

Our client wanted us to allow new rows to appear, even though an answer was required. We were not to
show any indication that answers were required until the last row was reached and the next page was
selected.

> back to Table of Contents

9

This goes beyond the normal behavior of DK/RF.

2.2 Elaborated Views

Our client had two major concerns:

• The client did not want either the navigation buttons or the table headings (question and option
headings) to disappear when scrolling. Their preference was to have a frozen header such as
existed in Excel.

• The client did not want the answer-required columns to appear until the respondent had gone
through the complete table.

2.2.1 The Standard Options Table Version
After some design work that involved paying a good deal of attention to the resource database, we have
an approach that satisfies our original client and is being evaluated by others.

We answered some, but not all, questions because the specification said that the respondent should not be
troubled by missing an answer:

> back to Table of Contents

10

However, respondents needed to answer all the questions, and so when they select the next-page button:

> back to Table of Contents

11

The rows without answers are highlighted, and the respondent has to answer all the missing rows:

2.2.2 The Growing Options Table Version
We start here:

The respondent is not forced to answer a question:

> back to Table of Contents

12

However, at the end of the questions and when the next-page button is selected:

The respondent has to answer all the questions before continuing to the next page.

> back to Table of Contents

13

3. Conclusions

There are many powerful tools in Blaise 5, and many of them reside in the resource database. There are so
many tools that we are only now discovering some of them—and many are not well documented. It is
only by pushing the envelope that we discover some of these tools.

For example, we use a Boolean server variable named AllVisited that is true when all rows of a table have
been visited. We started with:

ServerVariables.SetBoolean('AllVisited', Page.Fields.All(item.isvisited))

However, sometimes we had cases where we could see that all fields on a page were visited, but
AllVisited was never true. On further investigation, we found that in the “items” were Field References
that were never visited. After consulting with StatNeth, we added another condition to the All() directive:

ServerVariables.SetBoolean('AllVisited', Page.Fields.All(item.IsVisited OR
item.Origin = Reference))

That is, there was a way to distinguish between types of fields by their origin, and this feature had existed
for some time (but was unpublicized). At the time of writing, the origin feature is still undocumented.

The main takeaway from our adventures with tables is that many things are possible and, in Blaise 5,
those many things are often tucked away in the resource database. We always try to find a generic
solution to a specific problem because we want to apply the solution to a range of instances. In the case of
tables, by using tools in the resource database, we found generic solutions.

> back to Table of Contents

1

Video Interviewing: An Overview
Andrew Hupp, University of Michigan

1. Background

1.1 Why Video-Mediated Interviews?
When face-to-face data collection is required, video-mediated interviewing appears to be an effective
alternative to in-person data collection, since it’s also face to face. It allows interviewers to help with
difficult response tasks, like cognitive assessments. It enables data to be collected from members of
remote populations, like those deployed in the military or those with security or privacy concerns. It
reduces or eliminates interviewer travel costs. It promotes completion (Hupp et al., 2021) and reduces
straightlining when compared with self-administration (Conrad et al., 2023), and it promotes the same
levels of rapport between the respondent and interviewer that are observed in in-person interviews (Sun et
al., 2021).

1.2 Respondent Considerations
But not all respondents have access to video communication, potentially leading to coverage errors
(Schober et al., 2020). To do a video interview, one needs a stable internet connection and a device with a
working camera and microphone, and they must be willing (Schober et al., 2023) and comfortable enough
with using video. In 2021, Pew reported that 81% of U.S. adults have used video to talk with others and
that those with more education are likely to make frequent video calls. These data are from early in the
COVID-19 pandemic and presumably have increased since then.

On the other hand, having video as a communication mode might improve access in some cases, like for
those who might be too shy to ask an interviewer to speak up but could easily turn up the volume in a
video interview to better hear the question.

1.3 Early Visions of Video Communication
Video communication was first conceptualized in the 1870s by Bell Labs. The first video call (by Bell
Labs), was a one-way audio and video call that President Hoover made to New York in the late 1920s.

The 1930s saw early prototypes of two-way calls in Germany and New York. Bell Labs debuted the
picture phone at the 1964 World’s Fair.

Video communication began appearing in popular culture around this time. In the 1968 movie 2001: A
Space Odyssey, Dr. Heywood Floyd (in a space station) goes into the picturephone booth and inserts his
credit card to pay for the video call to his daughter, who is on the Earth. In the early 1960s, prior to the
World’s Fair, The Jetsons debuted, with video calls envisioned as one-to-one communication, much like a
telephone call. In season 1, episode 10, they anticipated telemedicine, with Jane calling the doctor to
evaluate Elroy, who says he is too sick to go to school.

1.4 Current Use
There is interest in the use of video in data collection operations. Several projects in the United Kingdom,
Europe, Australia, and the United States have incorporated video in some capacity in their recent data
collections. Research Strand 3 of the Survey Futures initiative in the United Kingdom is dedicated to
investigating video interviewing further. There is an international video interviewing special interest
group through the National Centre for Research Methods Survey Data Collection Network in the United
Kingdom. There is an upcoming special issue of the journal Methods, Data, Analyses on the topic of

> back to Table of Contents

2

video interviewing for collecting survey data that is scheduled for publication in early 2025, and there
was an American Association for Public Opinion Research webinar on video survey interviews in 2022.

1.5 Vocabulary
What was originally called videoconferencing, is now more commonly referred to as video
communication, video calls, or video meetings.

I do not advocate the use of four-letter acronyms with a “C” for “computer assisted,” like CAVI for
computer-assisted video interview. All video communication involves a computer, which mediates the
communication more than assists an interviewer. These acronyms made sense when the shift from paper
to computerization occurred. The assumption now should be that a computer is being used.

I distinguish live video interviews from a mode in which video recordings of interviewers reading
questions are embedded in online questionnaires.

I use live video interviews to mean live, two-way communication and use in person for what has been
historically referred to as face to face. I do this, since both modes are face to face and don’t provide
enough detail in describing the interaction.

2. Design and Implementation

2.1 Sample and Recruitment
One potential option for recruiting respondents is cold calling, although there are likely challenges with
assembling a sampling frame. There are also questions as to how effective this recruitment method might
be. Unsolicited contact, like inviting a household via an address-based sample, is at the moment unlikely
to be productive (Hupp et al., 2021). The invitation to video interviews needs to be in another mode, like
email, in person, or telephone.

A second option is having the respondent self-schedule in advance. It’s a good idea to obtain contact
information, such as a phone number or email address, so it can be used to remind the respondent of when
their appointment is, and it provides the interviewer with other methods in which to contact the
respondent if they are having technical issues when trying to join or during the interview.

The third option is an on-demand approach, where there are interviewers on standby waiting to do a video
interview. The American National Election Studies tried this during its 2020 data collection and found
that it’s feasible but inefficient.

Video interviews seem well suited for longitudinal panel studies in which there is already trust with the
survey organization, and the possibility to instruct a respondent on the use of video and to check or test
connections during earlier in-person visits.

2.2 Scheduling
You’ll want to develop a strategy for reminding the respondent of their appointment. Conrad and
colleagues (2023) implemented a strategy where the respondent was first reminded the day prior to the
appointment, then 2 hours prior to the appointment time on the day of the interview, and 5 minutes after
the appointment time if the respondent had not joined the meeting.

The respondent received either an email, text message, or both depending on the information they
provided when scheduling the appointment. Each message contained the meeting link and a link to
reschedule the appointment. The 5-minute late message was triggered by the interviewer from within the

> back to Table of Contents

3

management system. The message mentioned that the interviewer would remain in the meeting for 10
minutes. Based on evidence from studies in other modes and our own experience with video interviews,
we suspect that the scheduling approach may work better for participants who have already agreed to
participate in an ongoing study than for newly invited sample members to a cross-sectional study.

2.3 Breakoffs
We have evidence that those who start a video interview are likely to finish (Hupp et al., 2021). Figure 1
depicts breakoffs using data from the Conrad et al. (2023) study. The x-axis is the question where the
breakoff occurred, and the y-axis is the proportion of cases remaining. The green line represents live
video interviews, the red line represents web surveys, and the blue line represents prerecorded video—a
web survey with a video of an interviewer asking the questions.

Figure 1. Breakoffs

We see that once participants were recruited into the live video mode, there were very few breakoffs,
especially compared with the two types of web surveys, perhaps due to the presence of a live interviewer.
This is encouraging, although those live video breakoffs that did occur were due to technical issues (not
present in other modes).

3. Data Quality
Looking at data quality, there are two published studies that have examined this. The first is a lab study
conducted by Endres and colleagues (2022) that compared data quality in live video, web, and in-person
interviews. The second is field study by Conrad and colleagues (2023) that compared data quality
between live video, web, and prerecorded video.

> back to Table of Contents

4

Both studies found that most satisficing behaviors are less common in live video than in a web survey,
with rounding being the exception, much like in in-person interviewing where there is greater time
pressure than during a self-administered, relatively asynchronous web survey.

Table 1. Data Quality

Data Quality Measure Endres et al. (2022) Conrad et al. (2023)
Length of open responses Live video > Web
Straightlining Live video (marginally) < Web Live video < Web
Missing data Live video < Web Live video < Web
Rounding Live video > Web
Disclosure Live video < Web Live video < Web

Endres and colleagues (2022) found no data quality differences between in-person and live video
interviews. Conrad and colleagues’ (2023) findings are analogous to published comparisons of in-person
and web.

• Straightlining: is less prevalent in in-person interviews than in web surveys (Heerwegh &
Loosveldt, 2008).

• Disclosing sensitive information: there is more socially desirable responding in in-person
interviews than in web surveys (Heerwegh, 2007).

• Rounding: is greater in in-person interviews than in web surveys (Liu & Wang, 2015); this is
attributed to there being greater time pressure in in-person interviews than in web surveys.

4. Interviewer Effects
It’s possible that as much as interviewers in in-person interviews are known to introduce error variance,
that is, to create interviewer effects, live video interviewers may introduce interviewer error. West and
colleagues (2022) examined this and report that interviewer variance is low overall, with IICs less than
0.02. They didn’t have an in-person group to compare to, but this suggests that live video interviewers
introduce no more variance than is typical in an in-person interview.

5. Discussion
Scheduling a meeting seems to be the norm, compared with the cold calling model. There are options
depending on the project design. The respondent can be offered a self-schedule option where they are sent
a link and they select a time that works for them, or have an interviewer schedule a video interview at the
conclusion of a prior in-person interview.

Video interviewing needs to be easy for the respondent. Implementing a “one-click” solution where it
utilizes the browser rather than having the respondent download or install specific software apps they may
be unfamiliar with will be key. Having one platform that is browser based rather than having the
respondent choose the platform they are the most comfortable with will also limit the burden on the
survey organization from having to support multiple platforms and purchasing operating system–specific
equipment.

Video is more likely to succeed when it is offered as a choice in a single interview, rather than the lone
choice, or as a follow-up to an in-person interview, like in the American National Election Studies.

Some studies have been screen sharing content for things like showcards, but there are products where
other content can be shared, such as sharing a self-administered questionnaire with the respondent to
allow them some privacy when answering sensitive questions. More methodological work is needed to

> back to Table of Contents

5

understand how various video interviewing features—things like turning the camera off or turning survey
control over to the respondent when responding to sensitive questions—impact implementation and data
quality in video interviews.

6. References
Conrad, F.G., Schober M.F., Hupp A.L., West B.T., Larsen K.M., Ong A.R., & Wang T. (2023). Video
in survey interviews: Effects on data quality and respondent experience. Methods, Data, Analyses, 17(2)
135–170. https://doi.org/10.12758/mda.2022.13

Endres, K., Hillygus, D. S., DeBell, M., & Iyengar, S. (2022). A randomized experiment evaluating
survey mode effects for video interviewing. Political Science Research and Methods, 1–
16. https://doi.org/10.1017/psrm.2022.30

Heerwegh, D. (2007). Mode differences between face-to-face and web surveys: An experimental
investigation of data quality and social desirability. International Journal of Public Opinion Research,
21(1), 111–121. https://doi.org/10.1093/ijpor/edn054

Heerwegh, D., & Loosveldt, G. (2008). Face-to-face versus web surveying in a high-internet-coverage
population: Differences in response quality. Public Opinion Quarterly, 72(5), 836–846.
https://doi.org/10.1093/poq/nfn045

Hupp, A.L., Larsen K.M., Conrad F.G., Ong, A.R., Schober M.F., West B.T. & Wang, T. (2021).
Recruitment and participation in video interviews [Paper presentation]. European Survey Research
Association 9th Conference, Virtual.

Liu, M., & Wang, Y. (2015). Data collection mode effect on feeling thermometer questions: A
comparison of face-to-face and Web surveys. Computers in Human Behavior, 48, 212–218.
https://doi.org/https://doi.org/10.1016/j.chb.2015.01.057

McGonagle, K., & Sastry, N., (2021). An experimental evaluation of an online interview scheduler:
Effects on fieldwork outcomes. Journal of Survey Statistics and Methodology, 9(3), 412–428.
https://doi.org/10.1093/jssam/smaa031

Pew Research Center. (2021, September). The internet and the pandemic.

Schober, M.F., Okon, S., Conrad, F. G., Hupp, A.L., Ong, A.R., & Larsen, K.M. (2023). Predictors of
willingness to participate in survey interviews conducted by live video. Technology, Mind, and Behavior,
4(2). https://doi.org/10.1037/tmb0000100

Schober, M.F., Conrad, F.G., Hupp, A. L., Larsen, K.M., Ong, A.R., & West, B.T. (2020). Design
considerations for live video survey interviews. Survey Practice, 13(1). https://doi.org/10.29115/SP-2020-
0014

Sun, H., Conrad, F. G., & Kreuter, F. (2021). The relationship between interviewer-respondent rapport
and data quality. Journal of Survey Statistics and Methodology, 9(3), 429–448.
https://doi.org/10.1093/jssam/smz043

West, B.T., Ong, A.R., Conrad, F. G., Schober, M.F., Larsen, K.M., & Hupp, A.L. (2022). Interviewer
dffects in live video and prerecorded video interviewing. Journal of Survey Statistics and Methodology,
10(2), 317–336. https://doi.org/10.1093/jssam/smab040

> back to Table of Contents

1

Video Interviewing: An Optimal Solution for a National Behavioral
Health Survey
Preethi Jayaram, Lilia Filippenko, Curry Spain, Matthew Check, Wendy Reed, Christine Carr, Heidi
Guyer, and R. Suresh

1. Introduction/Abstract
The Mental and Substance Use Disorders Prevalence Study (MDPS) is a pioneering national study to
estimate the prevalence of serious mental and substance use disorders among adults in the United States,
including those residing in households, prisons, homeless shelters, and state psychiatric hospitals. The
MDPS used a three-stage design for the household survey that consisted of a roster to establish eligibility
and select adults for participation, a mental health screening survey that was used to disproportionately
select those with a higher likelihood of disorders, a clinical interview that included the Structured Clinical
Interview for DSM-5 (SCID-5®) (SCID-5®; First et al., 2015), and questions about treatment receipt. In
the non-household component, a roster of age-eligible residents was obtained from participating prisons,
homeless shelters, and state psychiatric hospitals. Then, the roster was sorted by key characteristics of the
individuals, such as age and time since admission, and a random probability sample was then selected
from the sorted roster via a systematic sampling scheme. MDPS utilized clinicians with clinical training
in mental health, including experience conducting the SCID-5®, to conduct clinical interviews. The
clinical interview was programmed in Blaise 5 and included a link to the NetSCID-5, a web-based version
of the SCID-5. Video interviewing was planned for a large subset of the household sample, but the
COVID-19 pandemic forced us to switch to this new paradigm for all of the household clinical interviews
and to offer video interviewing as an option for clinical interviews conducted in the non-household
settings. This paper describes the systems developed to support video interviewing and integration of a
Blaise instrument on a large national data collection effort conducted in multiple settings. It also describes
the development of an interview scheduling tool, automated reminders, logistical considerations in the
various settings (i.e., interviewer and respondent setup), video recordings, quality reviews, interview
editing, and feedback provided by both interviewers and respondents. Over 3,700 video interviews and
1,600 phone interviews were conducted using Zoom, in addition to approximately 200 in-person
interviews within the facility settings. Video interviewing offers a novel mode of data collection with
many of the same benefits of face-to-face interviewing and the added benefit of audio and video recording
of the interviews. Lessons learned and future recommendations for national surveys are also provided.

2. Background
The initial plan was to conduct most household clinical interviews in person or by video, a subset by
phone, and the non-household clinical interviews in person. Data collection was scheduled to start in July
2020. Because of the COVID-19 pandemic, we abandoned the in-person clinical interview data collection
mode for the household sample. Video interviews were prioritized, and phone interviews were offered to
respondents who couldn’t or did not want to participate via video. The non-household data collection plan
was also revised to incorporate video and phone modes.

3. Developing Systems for MDPS Video Interviewing
3.1 Web Scheduler
Because the household rostering and screening was web based, it became imperative that we have a
reliable and convenient mechanism to schedule the video clinical interview. We took advantage of the
fact that the respondent was already on the web completing the screener to offer them the opportunity to
schedule their interview through the web. Later in the data collection process, when we did send out field

> back to Table of Contents

2

interviewers to administer the roster and screener, we were able to leverage the same web-based scheduler
to schedule the household clinical interviews.

We designed the web scheduler to be as flexible as possible so that the same page could be used by both
the respondents themselves and a variety of interviewing staff. At the end of the screener, respondents
were automatically directed to the scheduler; respondents could also access the scheduler from the MDPS
website using an access code. RTI International’s call center staff could access the scheduler if a
respondent called in to schedule or reschedule their appointment. RTI’s computer-assisted telephone
interviewing (CATI) staff and RTI field staff were routed to the scheduler at the end of the screener. RTI
field staff also accessed the scheduler from their tablets as part of the field interviewer prompting effort.

The scheduler allowed the user to schedule, reschedule, or cancel the appointment. The scheduler
automatically adjusted for the time zone and adapted for the availability of bilingual interviewers. It
provided a confirmation screen for each of the actions that made the outcome of the user’s actions clear to
them.

Automated emails were sent to the
respondents to confirm their appoint-
ments and to alert them 3 weeks, 1 week,
and 1 day prior to their appointments. In
addition, CIs received automated emails
that listed the appointments for a given
day. Figure 1 shows how data collection
staff and respondents selected the date
and time for the clinical interview
appointment in the scheduler.

3.2 Clinical Interview Instrument
The purpose of the clinical interview
instrument was to collect data to assess
symptoms of mental and substance use
disorders among adults and the
proportion of adults who received
treatment. The instrument was
programmed using Blaise 5, and a SCID-
5® instrument was launched within
Blaise. All interviews were conducted by
trained clinicians such as psychologists,
psychiatrists, or social workers who had
received training on MDPS
instrumentation and procedures.
Interviewers met with respondents via
video, phone, or in person (non-
household sample only) to conduct the
clinical interview.

At the beginning of the clinical interview,
respondents were asked for permission to
record the interview. After completion,
demographic information; use of tobacco, alcohol, and drugs; and the names of used medications was

Figure 1. Scheduler Screen for Appointment Date/Time

> back to Table of Contents

3

collected. To begin the SCID-5, an action “GotoUri” was used from the Blaise instrument to start the
RTI-developed NetSCID app.

The NetSCID allowed interviewers to connect to a third-party website to continue the interview. The
NetSCID is a computerized version of the SCID-5. Once the NetSCID was completed, control went back
to the Blaise survey for interview completion. In addition, a stand-alone Windows application (using C#)
was built to allow administrators to connect to a specific case and download reports that contain data
saved for that case.

The clinical interview was installed on a laptop with a Case Management System was set up to help the
clinical interviewers (CIs) navigate through the list of respondents and to launch the Blaise interview.

When the SCID-5 was completed, control was returned to Blaise and the interviewer collected treatment
information and feedback from the respondent about the interview and their own opinion in the Blaise
instrument.

3.3 Video
Zoom was used by CIs to conduct clinical interviews with respondents in households and non-household
facilities. Zoom meeting invitations were sent by email through CIs’ Outlook accounts so that each Zoom
session would have its own unique password. An Android tablet was used by the clinical interviewer to
schedule and record the Zoom interviews and a laptop was used to administer the clinical interview
questions. The video was recorded with the respondent’s consent, and recordings were uploaded to the
MDPS private site for a quality check.

Approximately 67% of the household clinical interviews and 31% of non-household clinical interviews
were conducted via video.

> back to Table of Contents

4

3.4 Private Site
A private site was developed to allow managers and supervisors to track interview scheduling and to
modify schedules if needed. The site also allowed interviewers to upload Zoom recordings so that
supervisors were able to review data quality. In addition, the site was designed to allow authorized users
to conduct training and interrater reliability exercises.

The site was designed using .Net C#. It used a combination of
webforms, APIs, and web services to allow users to not only navigate
the site but also incorporate web services to allow access for recordings
and external clients. Once the interview was completed, the interviewer
received the URL to the Zoom recording file and associated password to
access the recording. The interviewer then uploaded the file to the
private site. Once uploaded, the file was linked to a case, and managers
and supervisors were able to access, download, and review the file for
quality control. Figure 2 shows the private site main menu.

3.5 Quality Control
Another advantage of video interviewing was that with the respondent’s
permission, the interview was recorded; these recordings were available
for data quality reviews. Recordings were stored and reviewed on our
private study website. The clinical section, which consisted of the
structured clinical interview for the DSM-5, was reviewed by clinical
supervisors (CSs). The nonclinical (Blaise) section, which included
consents and questions on gender identification, cigarette and e-
cigarette use, treatment, and COVID-19, was reviewed by data quality
managers (DQMs).

CSs accessed the CS Data Quality section of the private study website
to review and score the clinical module administration. This involved
the CS accessing both the completed SCID and the interview recording,
reviewing the data collected item by item, and comparing the notes
provided by CIs with diagnostic ratings. CSs reviewed 10% of all
completed interviews, which included (1) interviews selected at random
and (2) interviews manually selected for review via the CI or the CS
requesting that the interview be placed in the 10% review pile because
of some uncertainty about any part of scoring. In addition, some video-
and audio-recorded interviews that were not selected for full review
received partial reviews upon CI request. For example, if a CI needed a second opinion on the scoring of
a specific module, such as PTSD, this part of the interview was reviewed by their CS. For full reviews,
either the audio or video recordings were reviewed in their entirety. If an interview was partially
reviewed, audio and video file(s) were used, as necessary, to clarify responses, supplement notes, or
support the CI’s SCID ratings.

All clinical interview feedback was documented on a dedicated, interview-specific clinical review
summary form, which included records of clinical editing, individualized feedback, and systems for
monitoring CI performance. CSs provided CI performance ratings on their SCID module administration,
and documented strengths and areas of improvement related to clinical interviewing. This summary form
was used to provide feedback directly to CIs. Reviews included ratings on the following:

Figure 2. Private Site Main Menu

> back to Table of Contents

5

• providing accurate and sufficient notes,
• assigning proper or missed codes,
• the amount of probing,
• the types of probing,
• obtaining an adequate amount of relevant information,
• resolving inconsistencies,
• maintaining a professional demeanor,
• establishing rapport with the respondent,
• dealing with the respondent’s emotions and body language properly,
• obtaining a description of the experiences a respondent reports in the respondent’s own words,
• maintaining the correct interview pace,
• differentiating between symptoms that are easily confused, and
• handling distressed respondents appropriately.

After each review, the CS coded the case on the private site to indicate whether there were major issues,
minor issues, or no issues with the interview. Minor issues involved symptom-level scoring changes that
did not impact disorder-level scoring changes. Major issues involved disorder-level scoring changes. Data
from interviews deemed to have issues that required a change in scoring were corrected by the CS before
case finalization. Figure 3 shows the data quality outcomes of the clinical modules reviewed.

Figure 3. Clinical Data Quality

The DQMs accessed the DQM Data Quality section of the private study website to review the same set of
interviews elected for CS review. DQMs focused the review on how well the CI administered the Blaise
portion (i.e., non-SCID portion) of the clinical interview. This review included ensuring that CIs followed
instrument scripts and collected accurate, high-quality data. All CIs’ first two completed clinical
interviews and 10% of all completed clinical interviews were selected to have the Blaise instrument
administration reviewed. The DQM shared feedback from these Blaise reviews with the CI’s Data

> back to Table of Contents

6

Collection Manager, who shared results with their CI via email or a face-to-face meeting, depending on
the number and severity of issues identified. Results of these reviews were independently tracked by the
data quality team.

Blaise reviews were conducted by reviewing clinical interview recordings alongside the Blaise instrument
specifications. Reviewers input individual interview results within a project-specific Blaise review
tracking system that allowed for section- and interviewer-specific grades. The tracking system was broken
down into three review sections:

• Front-end Blaise—included ratings and error notes (i.e., no errors, few errors, many errors) on
properly administering consent and all pre-SCID questions

• Back-end Blaise—included ratings and error notes (i.e., no errors, few errors, many errors) on all
post-SCID modules

• Interviewer Feedback—included ratings (i.e., unsatisfactory, satisfactory, excellent) on reading
questions verbatim, effective probing techniques, not introducing bias, answering respondent
questions and concerns, and interviewing pace and presence

After each review, the DQM coded the case on the private site to indicate whether there were major
problems; minor problems, which meant there were errors that did not change the meaning of the
question; and major problems, which meant that there were errors that did change the meaning of a
question.

Figure 4 shows the data quality outcomes of the Blaise modules reviewed.

Figure 4. Blaise Data Quality

> back to Table of Contents

7

3.6 Feedback
Obtaining CI and respondent feedback on the clinical interview process was critical to inform study
protocols and future data collection efforts. At the end of each clinical interview, we collected feedback
from both the respondent and the CI about the clinical interview. We also sent each CI a survey near the
end of the data collection period to collect additional information. A summary of the feedback received is
included in the sections below.

3.7 Respondent Feedback
Because respondents could participate in the clinical interview via video, phone, or in person (non-
household cases only), we asked about their comfort level with their selected interview mode. We found
that 90% of respondents who completed the interview via video indicated they were comfortable; this was
comparable to phone and in-person modes (Figure 5).

Figure 5. Respondent Comfort Level with Selected Interview Mode

We also asked video respondents how comfortable they were using Zoom; 94% indicated they were very
comfortable or comfortable (Figure 6).

Figure 6. Respondent Comfort Level Using Zoom

3.8 Clinical Interviewer Feedback
At the end of the interview, CIs were asked about the respondent’s experience with Zoom. Figure 7 shows
that most respondents did not have any technical difficulties with Zoom.

> back to Table of Contents

8

Figure 7. Respondent Technical Difficulties with Zoom

CIs also reported that most respondents did not get disconnected from the video interview (Figure 8).

Figure 8. Respondent Disconnection from Video Interview

Because visual observations were important for this study (clinical observations were critical to
accurately assess the negative symptoms of schizophrenia spectrum disorders), we also asked about the
quality of the video. CIs indicated that for 91% of the interviews, the quality of the video was extremely
good or good (Figure 9).

> back to Table of Contents

9

Figure 9. Overall Visual Quality of Interview

We also asked CIs about the use of visual observations in making diagnoses. In about 71% of cases where
the respondent had at least one mental disorder, CIs indicated that they used visual observations.
Figure 10 shows CIs’ ratings of how helpful visual observations were in making a diagnosis—comparing
respondents with no mental disorders to respondents with at least one mental disorder.

Figure 10. Helpfulness of Visual Observations in Making Diagnosis

CIs also indicated that the CI and the respondent were able to hear each other clearly during most of the
interviews; the percentage was slightly higher for video interviews (Figure 11).

> back to Table of Contents

10

Figure 11. Interviewer and Respondent Able to Hear Each Other Clearly During Most of Interview

In a debriefing survey, CIs were asked to rate the functionality of the video interviewing process using a
scale of 0 to 10. Figure 12 shows that most CIs rated the process as excellent.

Figure 12. Functionality of Video Interviewing Process

CIs also reported that Zoom was easy to use for all parties (CIs and respondents) and that most
respondents were very familiar with Zoom.

4. Conclusions (Including Benefits/Drawbacks)
We found video interviewing to be an effective method and a feasible alternative to in-person
interviewing. Ninety percent of our respondents reported being comfortable with video interviewing; 94%
reported being comfortable with the interviewing software. Having the audio and video recordings made
it easier to authenticate the interviews.

However, there were some drawbacks to using this method. Initial setup of Zoom required significant
involvement of a technical support team. Uploading large video files took a lot of bandwidth, which
resulted in increased interviewer and technical support labor. While the scheduler did send an
appointment confirmation and automated reminders, the CI was still tasked with sending the interview
Zoom link. Cis shared that using two devices (the tablet for Zoom and the laptop to administer the clinical
interview questions) was challenging.

5. Future Recommendations
To avoid the issue with uploading large video files, reviewing them directly in the cloud would be a more
robust solution. In addition, using a single device with two monitors—one to display the interview and

> back to Table of Contents

11

the other for the Zoom window—would be more convenient from a usability point of view. Automating
the process of sending the Zoom link to the respondents would reduce the burden on CIs.

6. References
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2015). Structured clinical interview for
DSM-5—Research version (SCID-5 for DSM-5, research version; SCID-5-RV) (pp. 1–94). American
Psychiatric Association.

NetSCID is a computerized version of the Structured Clinicial Interview for the DSM-5 (SCID-5) and is
fully licensed by the American Psychiatric Association through American Psychiatric Association
Publishing. https://www.telesage.com/netscid-5

> back to Table of Contents

1

Video Interviewing at the University of Michigan
Andrew Hupp, University of Michigan

1. Background
Video communication is increasingly common, from live two-way video (e.g., Zoom, FaceTime, etc.), to
live one-way streaming (e.g. Ring doorbells, baby monitors, etc.), to playing recorded videos (e.g.,
TikTok, YouTube, etc.). It’s become standard on computers and smartphones.

The pandemic prompted survey researchers to turn to video technology as an alternative to in-person data
collection. Despite a widespread increase in familiarity with video technology, the novelty of video as a
survey mode leaves many questions unanswered.

This paper discusses three video related projects that the Survey Research Center (SRC) at the University
of Michigan (UM) has been engaged with to try and understand some of these issues, and test different
ways in which some of the various components can be implemented.

2. Video Communication Technologies
The first study we carried out was a mode experiment study where three modes, live video, prerecorded
video (a web survey with a video of an interviewer reading the questions), and a textual web survey
(Conrad et al., 2023), were compared in terms of data quality. The project was carried out from August
2019 to March 2020 using both an address-based sample, and two online non-probability panels as
recruitment sources. All three modes were implemented in a single Blaise 5.6.5 instrument that allowed
for mode specific displays. To promote comparability between modes, question batteries were always
presented as a series of individual questions. In the two web modes, the display was optimized for screen
size, (e.g., using response buttons that included the text of the response within the button for devices with
smaller screens, and radio buttons for devices with larger screens).

2.1 Live Video

See Conrad et al., 2023, and Schober et al., 2020) for more detail on the implementation and design
considerations. See https://www.mivideo.it.umich.edu/media/t/1_1zoid4cu for an example of a live video
interview.

2.1.1 Platform Considerations

The platform decision came down to Zoom and BlueJeans. Zoom was the institutional platform at the
New School for Social Research (a research partner), and BlueJeans was the institutional platform at the
UM. Either came at no cost to the project. The project ultimately decided to move forward with one
platform, BlueJeans. BlueJeans had an option to force the launch of the platform in a browser, making it
an easy solution for the respondent since they didn’t need to download and set-up anything, and we were
able to get additional paradata from the platform related to the video call (see Ong et al., 2019). Using one
platform also simplified the (limited) support interviewers provided when technical issues were
encountered. We were also able to generate unique meeting links en masse prior to the project and
assigned a link to each sample line in the management system.

2.1.2 Recruitment

> back to Table of Contents

2

There were questions about how respondents should be recruited and able to join video interviews.
Unsolicited calls using a platform like FaceTime, were not considered because it seemed unlikely that
respondents would answer, and researchers would have trouble assembling a sampling frame. Two
possible models remained, scheduling a time in advance, or having interviewers available to conduct
video interviews on-demand (see Guggenheim et al., 2021), both of which require an invitation in another
mode (e.g., mail, email, text message, in-person, or telephone). The on-demand model seemed potentially
cost inefficient, with interviewers waiting around for people to call in, so the project decided to recruit via
another mode and have potential respondents schedule a time via Calendly (an online scheduling
software). We were concurrently conducting a methodological experiment to understand interviewer
effects in video interviewing (see West et al., 2022) which added another complexity to the scheduling.
An interviewer was randomly assigned to a potential respondent during the scheduling phase. When a
respondent arrived at the site to schedule an appointment they were shown times that particular
interviewer was available.

2.1.3 Interviewer Considerations

2.1.3.1 Set-up

Live video interviews were conducted by nine experienced call center interviewers from the Survey
Research Center (SRC) at the UM. Since interviewers informed respondents they were calling from the
UM it was decided to leave the (live) call center as their background, rather than using a virtual
background. The interviewers used one monitor during the interview. The screen was split with the video
window in the upper portion of the screen and the Blaise instrument in the lower portion of the screen.
We did this because we wanted the respondent to have the sense that the interviewer was looking at them
while they were answering the question, like in an in-person interview. Each sample line had a unique
BlueJeans link preloaded in the management system. That unique BlueJeans link was pushed to the Blaise
instrument, where the interviewer clicked a BlueJeans icon to launch the interview meeting.

2.1.3.2 Training

While the interviewers were experienced administering telephone interviews, they did not have any prior
experience conducting live video interviews. Video interaction is different from voice only interaction, in
that the interviewer’s facial expressions and visual reactions can now be seen, and it’s different than an
in-person interaction in that the interview is being mediated (Schober et al., 2020). As part of training the
interviewers had practice sessions on remaining neutral, professional behavior (e.g., what to wear,
drinking and eating, etc.), practicing setting up the multiple windows on their screens, practicing the
interview, and sending messages to the respondent via the management system if the respondent was late
to their appointment. As part of classroom training they received background about the project, and
documentation on providing limited technical support to the respondent (e.g., turning the
camera/microphone on/off, rejoining a meeting, etc.) if problems were to occur.

2.2 Prerecorded Video

See Conrad et al., 2023 for more detail, and https://www.mivideo.it.umich.edu/media/t/1_vjhtigaf for an
example of a prerecorded video interview.

As noted earlier recorded videos are common. This type of video communication is one-way, and engages
the viewer in ways that text alone does not. Given this, it seemed that it would be worth exploring
prerecorded videos of survey interviewers reading questions in a self-administered web survey.

> back to Table of Contents

3

Prior research on this topic is limited. Fuchs and Funke (2007) report more socially desirable answers to
one of four questions; Haan et al., (2017) report no differences across 19 questions. Fuchs (2009) reports
gender of interviewer effects for four of four questions. So, even though recoded videos of interviewers
are inanimate and insensate, respondents sometimes react socially, which is consistent with the
“Computers Are Social Actors” framework (Nass and Moon, 2000).

The same nine interviewers that administered the live video interviews were recorded speaking the
questions using Camtasia. Each question was recorded as a separate file. Each page in the web survey,
initially contained only the video (no question text was ever displayed). In the desktop/laptop version, the
videos auto-played to reduce the respondent’s effort, and to give the delivery of the questions an
interviewer-administered character. On mobile devices the video would not auto-play, so respondents
were instructed to tap the play button to view each video. The respondent could replay the video to hear
the question again.

Response options did not appear until the question was asked, again mimicking the way an interviewer
would read the question as worded to make sure the respondent heard the entire question in an in-person
interview. The video controls available in the software did not allow us to do this, so we created a look-up
table with the speed at which each interviewer read each question so the Blaise instrument knew when to
display the responses on that page, for that question, for that interviewer.

3. Standard Achievement Assessments
The second study was a small (n=32) pilot of conducting standard achievement assessments of math,
reading, and vocabulary skills with children between the ages of 5-17, via video. Traditionally these
assessments have only been done in-person, but the publisher endorsed data collection via video for both
clinical and research purposes during the COVID-19 pandemic.

3.1 Set-up

3.1.1 Interviewer Set-up

Two experienced interviewers were provided a laptop with a camera, an additional monitor, and a
headset. The laptop had Blaise and the Zoom client installed. Each interviewer received 22 hours of
training on how to administer the interview.

3.1.2 Respondent Set-up

Given how (and to whom) the standard achievement assessments are administered it was determined it
would be best to have the survey organization provide a device, with internet connectivity. This allowed
for standardization of the device used by the respondent, and provided a family a way in which to
participate if they didn’t own the equipment needed or have an internet connection.

The survey organization purchased, and set up five Samsung Galaxy 10 tablets to provide to respondents.
Each tablet was in a protective case, had cellular connectivity, and was limited in functionality. The tablet
was set-up in kiosk mode with two applications: Zoom (for the video interview), and Pushover (for
notifications).

3.2 Implementation

3.2.1 Recruitment, Scheduling, and Notification

> back to Table of Contents

4

Interviewers recruited families via a Qualtrics screening instrument. As part of the recruitment,
interviewers reviewed study information with the parent, set an appointment for the interview, and
reviewed the tablet shipping logistics.

Appointment information, including the unique Zoom meeting link, was entered into a central project
calendar. Notifications of the appointments were pushed to the tablet via Pushover. Interviewers would
call parents via the phone to walk them through the steps to start the Zoom session for the child. Once the
Zoom session was started, the interviewer ended the call with the parent and continued the Zoom session
with the child.

3.2.2 Instrument

Three subtests were adapted for administration via video. Pages from those tests were digitized and
loaded in the Blaise instrument. Blaise would launch a window with the digitized image to the second
monitor, which was in portrait orientation. The interviewer shared the display in the second monitor to the
tablet the respondent was using. The video feed from the respondent’s tablet was viewable on the
interviewer’s second monitor so they could observe the test-taker and the testing environment. Annotation
was enabled on the tablet, which allowed the interviewer to observe when a child pointed to a word or an
image on the screen. Any annotations could be cleared by the interviewer prior to displaying the next
assessment image to the respondent.

3.2.3 Logistics

A tablet was shipped to the respondent’s address prior to the interview. When the interview was
completed the interviewer set-up the UPS return, and reviewed the packing instructions with the parent.
Prior to the date of pick-up, the interviewer contacted the parent to remind them.

Once the tablet was received the respondent was sent $50 for their participation. The tablet was then
sanitized, had the Zoom link removed, checked to see if the Zoom application had accidently been logged
out of, or had any settings updated, charged, and prepared for shipment to the next family for their
interview.

4. Child Development Supplement
The third study, the Child Development Supplement explored augmenting their in-person interviews with
live video interviews for children ages eight to eleven as part of a small (n=28) 2023 pretest. Traditionally
these interviews have been done in-person, but due to time limitations on in-person visits, and the remote
locations of some families, interviewing in-person is prohibitive.

4.1 Set-up

Zoom was installed on the interviewer’s organization issued smartphone. The smartphone was positioned
on a stand, “peaking” over the interviewer’s laptop screen. The Blaise instrument was displayed on the
laptop screen, with the interviewer reading each question and entering the response spoken by the
respondent.

A parent helped the child respondent set-up a family owned device with Zoom. The parent was allowed to
stay in the room and could help if there were technical issues. If the family did not have a device on
which to do the interview via video, they could do the interview over the phone, or could choose not to do
the interview.

> back to Table of Contents

5

Show cards were utilized on a few questions in the instrument. Due to the current configurations on the
organization issued smartphones, interviewers were not able to share the content via Zoom, so the
interviewer held the physical show card up to the camera for the respondent to view. In practice, this
didn’t work well, especially with a virtual background.

4.2 Zoom Configuration

The study required several Zoom settings to be updated. The interviewers were instructed how to
configure their global Zoom settings. Outbound Caller ID was adjusted from the default generic number,
to the interviewer’s smartphone number.

Under Security Settings, Requiring a passcode when scheduled new meetings, Require a passcode for
instant meetings, Require a passcode for participants joining by phone, and Embed passcode in invite link
for one-click join were all enabled, and Require a passcode for Personal Meeting ID (PMI) was disabled.

Two items under Schedule Meeting were adjusted. Audio Type was set to Telephone and Computer Audio,
and Enable Personal Meeting ID was disabled.

Under In Meeting (Basic) four settings were adjusted. Require encryption for 3rd party endpoints
(SIP/H.323), and Whiteboard (Classic) were enabled, and Meeting chat – Auto-save and Send files via
meeting chat, and Automatically create local export when sharing is stopped, under Whiteboard
(Classic), were disabled.

Under In Meeting (Advanced) two settings were adjusted. Save Captions was disabled, and Virtual
background was enabled. A background provided by the study was selected as the virtual background.

Under Recording, Local recording, cloud recording, and Allow cloud recording sharing were all
disabled.

4.3 Scheduling

The interviewer contacted a parent via the phone to schedule the interview meeting. The interviewer
scheduled the meeting with the respondent using their Google calendar with the Zoom for Google
Workspace add-on. The interviewer would add the email address of the parent, and a study email account
so both would receive the meeting invite details. The Zoom meeting ID generated, was entered into the
sample management system. The interviewer called the parent 24 hours prior reminding them of the
appointment scheduled for the next day.

4.4 Quality Control

Interviews were recorded for quality control purposes. The interviewer’s organization issued smartphone
was connected to the laptop so the audio stream from Zoom and the data entry of responses into Blaise
were recorded together. There was a concern about the potential of recording something that might need
to be purged, so the decision was made to not record the video stream from Zoom.

5. Ongoing and Future Work
We have an upcoming project that interviews people at two different points in time. The first interview is
in-person, with 50% of the second interviews being conducted in-person, and the other 50% via live
video. We are conducting a methodological pilot to understand what influences participating in video
interviews in this model. We are testing, 1) prepaying for the video interview at the conclusion of the first
(in-person) interview, 2) helping the respondent with any questions they might have about second (video),

> back to Table of Contents

6

including helping them conduct a video call on the spot, at the conclusion of the first (in-person)
interview, and 3) the timing of scheduling and reminding about the second interview. There is a delay of
at least a month between the two interviews in the pilot (longer in production). We are scheduling the
second interview at the conclusion of the first and trying a reminder strategy where the interviewer sends
the respondent an email and/or text message with the Zoom link the day prior to the appointment, a
reminder (~2 hours) the day of the appointment, and another message if the respondent is late (~5
minutes) to the appointment asking them to contact the interviewer if they are having problems joining.

This paper has highlighted different areas of three different projects that have conducted interviews using
video. There are some similarities, and some differences in how things were implemented. This could be
due to the design of a particular project, or could be due to the fact that there are multiple ways in which
some of these things can be implemented. More research is needed to understand what works well, what
doesn’t work, and how these things effect things like data quality when using video for survey interviews.

6. References
Conrad F.G., Schober M.F., Hupp A.L., West B.T., Larsen K.M., Ong A.R., & Wang T. (2023). Video in

Survey Interviews: Effects on data quality and respondent experience. methods, data, analyses,
17(2) 135-170. https://doi.org/10.12758/mda.2022.13

Fuchs, M. (2009). Gender-of-interviewer effects in a video-enhanced web survey: Results from a
randomized field experiment. Social Psychology, 40(1), 37–42. https://doi.org/10.1027/1864-
9335.40.1.37

Fuchs, M., & Funke, F. (2007). Video web survey - Results of an experimental comparison with a text-
based web survey. In M. Trotman, T. Burrell, L. Gerrard, K. Anderton, G. Basi, M. Couper, K.
Morris, K. Birks, A. Johnson, R. B. (Market Strategies), M. R. (PSI), S. T. (Inputech), & A. W.
(Survey & S. Computing) (Eds.), Proceedings of the Fifth International Conference of the
Association for Survey Computing: The Challenges of a Changing World (pp. 63–80).

Guggenheim, L., Howell, D., Amsbary, M., & DeBell, M. (2021). Live Video Interviewing in the ANES
2020 Time Series Study? Presented at the 2021 Conference of the European Survey Research
Association, Virtual.

Haan, M., Ongena, Y. P., Vannieuwenhuyze, J. T. A., & De Glopper, K. (2017). Response behavior in a
video-web survey: A mode comparison study. Journal of Survey Statistics and Methodology,
5(1), 48–69. https://doi.org/10.1093/jssam/smw023

Nass, C., & Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of
Social Issues, 56(1), 81-103. https://doi.org/10.1111/0022-4537.00153

Ong, A.R., Conrad, F.G., Larsen, K.M., Schober, M.F., Hupp, A.L., & West, B.T. (2019). What Can We
Learn About Data Quality from Video Communication Paradata? Presented at the Midwest
Association for Public Opinion Research, Chicago, IL.

Schober, M.F., Conrad, F.G., Hupp, A. L., Larsen, K.M., Ong, A.R., & West, B.T. (2020). Design
Considerations for Live Video Survey Interviews. Survey Practice, 13(1).
https://doi.org/10.29115/SP-2020-0014

West, B.T., Ong, A.R., Conrad, F. G., Schober, M.F., Larsen, K.M., & Hupp, A.L. (2022). Interviewer
Effects in Live Video and Prerecorded Video Interviewing. Journal of Survey Statistics and
Methodology, 10(2), 317-336. https://doi.org/10.1093/jssam/smab040

> back to Table of Contents

1

Converting Social Survey Blaise 4 Questionnaires to Blaise 5:
Creating a Blaise 5 Application and Modernizing the Labour
Force Survey
Andy Watson and Steve Maurice, Office for National Statistics, United Kingdom

1. Introduction
The Office for National Statistics (ONS) Social Surveys Delivery (SSD) runs numerous longitudinal,
annual, and ad hoc surveys. Most of these surveys are conducted as face-to-face interviews on
Blaise 4. The decision has been made to upgrade these surveys to Blaise 5 so that future surveys can
more easily incorporate mixed mode elements such as computer-assisted web interviewing (CAWI)
and computer-assisted telephone interviewing (CATI).

The Blaise 5 uplift project was initiated to transform all the SSD surveys from Blaise 4 to Blaise 5 and
all the associated legacy support systems.

1.1 The Survey for Living Cost and Food (LCF)
The Living Costs and Food Survey (LCF) collects information on spending patterns and the cost of
living that reflects household budgets across the country. The study provides information about
household spending patterns, which is used to update the contents of the consumer inflation basket of
goods and services. It is also used to provide information about food consumption and nutrition. It is
an important source of economic and social data for government and other research agencies.

The study is conducted throughout the year across the whole of the United Kingdom and is the most
significant consumer study undertaken in the country. The results are essential for understanding
society and planning to meet its needs.

Government departments use the results of the study to identify how and where they should be using
public resources.

They use the information to check how different groups in the community are affected by existing
policies and to inform future policy changes.

1.2 The Labour Force Survey (LFS)
The Labour Force Survey (LFS) is the largest regular social survey in the United Kingdom. Its
purpose is to provide information on the UK labor market, which can then be used to develop,
manage, evaluate ,and report on labor market policies. It has been running since 1973.

The main estimates of employment and unemployment in the United Kingdom are taken from the
LFS, and around 600 field interviewers and 200 telephone interviewers regularly work on the LFS.
They survey a random sample of almost 45,000 UK households every 3 months.

2. Behind the Surveys
2.1 LCF
The LCF collects information on spending patterns and the cost of living that reflects household
budgets across the country.

The study provides information that is used to update the contents of the consumer inflation basket of
goods and services. It is also used to provide information about food consumption. It is an important
source of economic and social data for government and other research agencies.

> back to Table of Contents

2

Currently, detailed expenditure data is collected by interviewers using Excel spreadsheets and
embedding images of receipts within them. The process was developed at pace when the COVID-19
pandemic hit in March 2020. No user testing was carried out prior to delivery due to the pace of
implementation needed to minimize the pause in data collection for the LCF.

2.1.1 LCF Methodology
The overall response rate for the LCF in Great Britain was 40% in the financial year ending (FYE)
2020, affected by fieldwork being paused because of the pandemic. This is a 3% decline when
compared with FYE 2018 and FYE 2019. A total of 13,996 addresses were sampled for the LCF in
Great Britain. Of these, 10% did not contain a private household and were therefore classified as
ineligible.

Of the eligible sample, it was not possible to contact 9% of addresses; a further 43% refused to take
part and 6% had another reason for nonresponse. Of the 5,072 responding households in Great
Britain, 4,964 cooperated fully, meaning they completed both the interview and diary sections of the
survey.

In FYE 2020, partial responses accounted for 2% of all cooperating households. Of these 108 partial
responses, 107 occurred because one or more adults in the household refused to keep the diary but
were happy to take part in the interview.

Interviewers recorded the main reason why people refused before or during an interview from a list of
precoded answers. In FYE 2020, the two most cited reasons for refusing to take part in the survey
were:

• Can’t be bothered—24%, which remains the top reason cited as was true in the previous
financial year.

• Temporarily too busy—16%, which is in line with the previous year.

Falling response rates are an acknowledged problem, and we have various initiatives to help tackle
these.

2.1.2 LCF Collection
Data collection for the LCF is done face to face by field force interviewers in the homes of the
respondents. Advanced letters are sent to all sampled respondents and a follow-up contact is made by
the interviewers to arrange a convenient time for the interview. An In-house case management
system, Casebook, is used to manage all the interviewer’s cases every month.

The respondent is asked to keep track of all their spending over a two-week period, by either making
note of what they purchase or preferably by keeping the receipts for all their purchases. When the
two-week period ends, the interviewer returns to the respondent’s address to collect this data.

The interviewer enters this detailed expenditure data using Excel spreadsheets and embedding images
of receipts within them. The process was developed at pace when the pandemic hit in March 2020. No
user testing was carried out prior to delivery due to the pace of implementation needed to minimize
the pause in data collection for the LCF.

2.2 LFS
The LFS is a survey of households living at private addresses in the United Kingdom. Its purpose is to
provide information on the UK labor market that can then be used to develop, manage, evaluate, and
report on labor market policies.

Having originally been conducted every two years from 1973 the methodology, the frequency of
collection and sample size changed over time, moving to its current state of collection by calendar

> back to Table of Contents

3

quarters plus an annual boost sample added in May 2006.

2.2.1 LFS Methodology
The LFS uses a rotational sampling design, whereby a household, once initially selected for interview,
is retained in the sample for a total of five consecutive quarters.

The interviews are scheduled to take place exactly 13 weeks apart, so that the fifth interview takes
place one year after the first.

We define Wave 1 to be the first quarter an address is selected, Wave 2 to be the second quarter in the
selection, and so on. Therefore, Wave 5 is the last time that household will be interviewed for the
main LFS.

2.2.2 LMS Collection
LFS fieldwork is carried out by the LFS interviewing force, which is composed of both face-to-face
interviewers, who work from their homes, and telephone interviewers, who work in a centralized
Telephone Operations Unit. Attempts were made to develop a web version of the questionnaire in
Blaise 4, but the results weren’t great.

3. LCF Questionnaire
The questionnaire is written in in Blaise 4.8 in a Computer-assisted personal interviewing (CAPI)
format, with the interviewer leading the respondent through the questionnaire.

3.1 The Diary
The diary is a separate collection to the Main LCF questionnaire, which is collected by the interview
and imputed into a Blaise 4 questionnaire by coders. The coders are asked to apply a Classification of
Individual Consumption According to Purpose (COICOP) code for each item so that types of
purchases can be analyzed at a granular level.

A small household section is completed first that includes First Name, Surname and Diary Type.
Diary Type establishes if the household member is and adult or a youth. All household members are
asked to fill in a diary but can refuse. This needs to be captured to establish household size.

The Usual purchases section records what type of items the household usually purchases, so that if
any information is incomplete, an informed decision can be made to complete the coding.

For example, if the answer to “What type of sausages do you normally buy?” is Pork, then an entry of
“Sausages - £2.50” is entered. They will be coded as Pork Sausages.

The diary collects 10 main areas of interest on expenditure within a household:

1. Food and drink
2. Takeaway food
3. Eating out
4. Clothing and footwear
5. Winnings
6. Home grown food
7. Trips abroad
8. Business refunds
9. Pocket money
10. All other purchases and payments

> back to Table of Contents

4

The diary is completed at the person level, meaning each person within the household (unless they
have refused) has a record of their spending over the two-week period.

There is a Main Food Spender; this person is identified within the household as the person who does
the “weekly” shopping for the household and usually has the most recorded items.

The main diary keeper keeps all large receipted “family” shopping as well as populating the “Usual
Purchases.”

Each person enters their individual Spending Pattern information, which references whether the
household member has any reasons for any unusual spending patterns. It may be that they were on
holiday for the two weeks and did not do a weekly shop, etc.

Non-Receipted items are listed separately and usually cover small amounts of items that are bought on
an ad hoc basis, like going to the newsagents and buying a paper and a can of coke, whereas receipted
items are entered as a total amount on the receipt. For these items, only the shop name and the total
amount are recorded at this point. The coders then enter each item separately applying COICOP codes
as they go.

3.1.1 Existing Process—and Paper
Previously, each person kept a record of their individual spending by recording it all on a paper diary
and giving this to the interviewer along with the receipts they had collected for the period.

Now, the interviewer sets up an Excel spreadsheet for each member of the household, which contains
a tab for each day of the collection period and a separate “area” on that tab for each expenditure
block. The interviewer then must scan the receipts to create a digital version.

The Excel spreadsheets and digital receipts are then submitted to HQ for the coders to pick up for
manual entry into the Blaise 4 questionnaire.

3.1.2 The Original RB5 Redesign
The new requirement is to be able to enter the information into a Blaise 5 questionnaire so that some
of the data can be transferred automatically.

It needs to be a single questionnaire but with the maneuverability of an Excel spreadsheet. It should
still gather the same data as the multiple files.

To make the questionnaire easy to navigate between the numerous areas of interest, use of the “Go to
Parallel” within the Resource Database was going to be employed. But this would mean a lot of
parallels. A lot! These parallels would also have to be nested, creating another complication to the
design process.

• 10 People − 14 Days − 10 areas of Expenditure
• 10 × 14 × 10 = 1,400 Parallels!

The expenditure question blocks were all programmed and tested independently, so that multiple
workstreams could be run. The main questionnaire with routing and navigation was developed
separately and the question blocks would be entered later. During initial testing, the questionnaire
contained arrays for 2 people, on 2 days, for 10 blocks, creating only 40 parallels.

The expenditure blocks were then added in successfully and a test questionnaire produced was
uploaded to our internal hosting environment.

> back to Table of Contents

5

3.2 Problems with OG Design
Although the questionnaire was built successfully and worked as expected, as soon as the arrays were
fully expanded to all 10 people for 14 days and all 1,400 parallels, the performance became a serious
issue.

Even though the pages were built for the package, which took approximately 8 hours, it was observed
that the loading time between pages was extremely slow—about 1.5 minutes per page. It was quickly
decided that this was untenable and that a new solution had to be explored.

3.3 The New Proposed Solution
Previously, we had explored a “two-part” questionnaire but had discarded this solution as our in-
house hosting system would not be able to support the movement between two questionnaires. When
the issues arose, we quickly created a proof of concept for a two-part design to see if the issues with
the in-house system could be resolved. With the support of our digital services team, a change to the
core code in the servers’ token system allowed the movement from one URL to another using the
same token, allowing us to jump from one questionnaire to another.

The “A” section of the new questionnaire would collect the household information—people in the
house, usual purchases, etc.—and then from a menu page containing a list of valid members of the
household, and a button that then would launch the “B” section.

The new “B” section would then hold the household members information at a “person-level”
database. Each person would enter all their expenditure for all the days.

This reduces the number of parallels in each section to:

• A—10 Parallels (1 for each person)
• B—140 Parallels (14 days, each with 10 Expenditure blocks)

Although this required two questionnaires, doubling monthly resource requirements, this development
greatly reduced both the compilation time and page load times at runtime.

3.4 Further Developments
During development of the expenditure block, it was decided that functioning summary pages would
aid the interviewer in reviewing the potentially large amount of items at the end of each block. It was
further discussed that it would also be helpful to enable them to edit those blocks from that review
page.

If the rollout of the finalized tool is successful, Blaise 5 would be considered for the further
development of the respondent-facing tool.

4. Labour Market Survey (LMS) Questionnaire
As with the LFS, the LMS questionnaire has already seen quite a few changes since its inception, and
more are planned for the very near future.

4.1 Early LMS
Originally set up as a longitudinal test ahead of starting work on an LMS proper questionnnaire, the
longitudinal test questionnaire was web-only based and the large database included samples for all
five waves for 13 cohorts. Cohorts were to be invited in one-week intervals, and the whole test was to
run over five quarters mirroring LFS. As the ONS was planning to repurpose the census collection
tool we had developed for business and social survey use, we were unable to host the questionnaire
ourselves and were helped by colleagues at NISRA, who hosted the questionnaire for us.

> back to Table of Contents

6

The LMS had a login questionnaire with a “start survey” instruction at parallel end to redirect to the
single test questionnaire GUID.

Because no training had been provided to Telephone Operations staff at this point, management of
refusals, appointments, and other processing such as invite/reminder letters were conducted from a
separate Blaise 4 Survey Enquiry Line (SEL) questionnaire, which every night just after midnight
was populated with outcome codes from the Blaise 5 instrument downloaded and inserted via
automated Manipula runs. All post-collection processing was run off this Blaise 4 instrument.

As news of a global pandemic broke, it was decided to increase the sample and ramp up the
development of the longitudinal test, adding new cohorts each quarter, so that if the worst-case
scenario happened and LFS collection had to stop, we might still be able to gather meaningful data.
Over many weeks and months, and with many late nights working from home, the questionnaire was
further developed, adding new question sections and increasing the sample. This proved challenging
as not only were we making changes at a rapid pace, which was only possible thanks to Blaise 5, but
we were also releasing new versions, which meant downloading a very large database from NISRA,
moving collected data to the new structure (being careful to map old data to the new structure so that
partials could still be completed), and packaging and reuploading to NISRA for them to install for us.
The whole process with the increased sample could take 6 hours and was usually occurring every
week or two.

4.2 Current LMS
At the start of 2021, as an office, it became clear that moving away from Blaise 5 was not going to
happen anytime soon, and that the LMS collection in Blaise 5 had been a great success.

A demand was growing for a telephone mode LMS, and having recently been buoyed by the
successful rollout of Blaise 5 training to Opinions and Lifestyle Survey staff, it was decided that
Blaise 5 would be used for all questionnaires.

With plans to increase the Wave 1 sample to 12,000 cases when introducing CATI collection, it was
clear that we couldn’t continue with the “One large database for the entire sample” approach we’d
been struggling to maintain until this point. It was agreed that we would instead make a single
questionnaire for each of the five new cohorts and start collection in any given week, which was later
changed to be one Wave 1 questionnaire and one merged Wave 2–5 questionnaire each week. This
required a new approach to the login questionnaire, which was developed to redirect to whichever
GUID was listed alongside the Unique Access Code entered by the user. Security measures were
taken to ensure that nobody could reverse engineer access to any of the cohort questionnaires directly
by setting server-side variables and passing through checksum values.

A lot of work by David Kinnear was conducted to merge the SEL questionnaire into the main
questionnaire and add a telephone layout that could easily be navigated by keyboard when run in
CATI mode. The call treatment options of the SEL questionnaire were all added as parallel tabs of the
new LMS questionnaire. This enabled us to have one questionnaire for both CAWI and CATI modes
while also meeting the needs of the SEL.

A Data Collection Platform was created by our IT colleagues, which enabled us to install the Blaise
questionnaires to their cloud servers for CATI collection and a nice front end was created for
managing data and questionnaire removals. The stock Blaise 5 CATI Dashboard would be used for
interviewers, interviewer managers, and SEL colleagues to log in and carry out their work after Roles
and Skills had been set up. Unfortunately, we were not in a position to enable CAWI collection at this
point, but it was planned that this Data Collection Platform would one day host our Blaise 5 web
questionnaires.

> back to Table of Contents

7

With no CAWI hosting capacity, a further agreement was made with our colleagues at NISRA, who
very kindly still host our LMS web questionnaire and have installed and hosted over 700 LMS
questionnaires for us at this point—and a significant number of other surveys too!

Instead of downloads occurring every night as with the longitudinal test, the download frequency was
increased to take place every hour to prevent chasing people who had just completed their
questionnaire, with the full set of CAWI data being downloaded by an automated process and web
completions and partials inserted into the CATI database. Every night a copy of the CATI data is
output in the format requested by users along with a BDBX for post-collection processing to be run
on.

A C# application “cloner” was developed to make short work of creating five, and eventually two,
new questionnaires each week, which we now use for other surveys and is continually being
developed. A separate app was created for users to run any post-collection processing, which is
essentially a “Manipula Script runner” that accepts specific cohorts as input, enabling us to retire the
Blaise 4 SEL questionnaire and post-collection processes entirely.

New versions of this questionnaire content are being continually developed as user needs change and
a parallel run is currently taking place with a view to one day retire LFS once it’s confirmed that data
sufficiently meet customer needs.

4.3 Future LMS
The future of the LMS has Blaise colleagues at ONS very excited currently, as it was recently proved
that the Data Collection Platform is able to host web questionnaires successfully, with a recent run of
the National Survey for Wales data being conducted online via the platform.

The Data Collection Platform manages the creation of Unique Access Codes and has its own user
login page, meaning we’ll no longer have to maintain the Blaise 5 login questionnaire.

This means that alongside the further refinement and development of the current question set, we’ve
been given the green light to host our own LMS CAWI questionnaire for the first time.

Work is currently being carried out at a rapid pace by David Kinnear to add a CAPI element for face-
to-face interviewer collection, so that all three modes—CAWI, CATI, and CAPI—can be run on our
first true mixed mode questionnaire, with all data being collected and managed in a single database.
This is something we’ve dreamed of doing since we first saw Blaise 5 and it’s very exciting that we’re
heading in that direction. We’re aiming to achieve this goal at the start of 2024, so if anyone has
experience doing this themselves and has any advice or tips to share, we’d be very grateful to chat
with you.

5. Summary/Reflections
Being in a current state of transitioning from Blaise 4 to Blaise 5 gives a distinctly unique viewpoint.
It is a good opportunity to review what worked well in the old system and what we would like to see
in the new system. What didn’t work well and should be left behind. What we look forward to using
in the new system and features that we feel we would benefit greatly from, as well as those new
available features that we are not so sure about yet, but in keeping an open mind, we may be
convinced are an improved method or system.

6. References
Office for National Statistics. Methodology of LFS, Volume 1.
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/
methodologies/labourforcesurveyuserguidance

Office for National Statistics, LCF Methodology.

> back to Table of Contents

8

https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/expenditure/
methodologies/livingcostsandfoodsurveytechnicalreportfinancialyearendingmarch2022/pdf

Office for National Statistics. LCF Survey.
https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandw
ealth/methodologies/livingcostsandfoodsurvey

> back to Table of Contents

1

An Electronic Life History Calendar in a Web Survey

Joseph Nofziger, Lilia Filippenko, Emilia Peytcheva, RTI International

1. Abstract
In surveys that collect data of experiences over multiple years of respondents’ lives, respondents are often
offered cues to help with the recall process. A life history calendar is one such tool that many
organizations have used over time, including the National Survey of Family Growth (NSFG). Using the
existing paper Life History Calendar as a starting point, RTI developed an electronic life history calendar
and integrated it with a Blaise 5 instrument so that web respondents have the option to view and report
significant events in a calendar format. When subsequently asked to place other events in time,
respondents could refer to the calendar for context and easier recall. The electronic calendar can be
displayed on demand at any time—or in specific sections, if so configured—either in full-screen mode or
along with the Blaise question. Its responsive design allows for a display on any screen infAppendix

 portrait or landscape orientation.

In iterative collaboration with our client, the National Center for Health Statistics (NCHS), we heavily
customized an off-the-shelf chart and automatically populated the calendar with responses in real time.
Events were put into temporal context with year, month, respondent age, and previously entered
responses to help orient the user. The Blaise instrument was designed to easily collect information for
effortless processing by the calendar application. In this presentation, we describe the architecture of the
calendar and its implementation with the Blaise 5 Web instrument.

2. Background
Life History Calendars (LHC) improve recall for events of interest by linking to landmark events in a
respondent’s life (Belli et al., 2001). Historically, they have been used in in-person, interviewer-
administered surveys. With the move to web and mixed-mode data collections, surveys like the NSFG
that utilize LHCs needed an alternative for the web administration.

NCHS began conducting the NSFG 50 years ago. The survey collects data on reproductive and general
health. Since 1995, it has used in-person CAPI data collection with instruments programmed in various
versions of Blaise. In January 2022, it moved to a mixed-mode design, including a self-administered web
instrument designed to work in browsers and on mobile devices.

3. Technical Description

3.1 LHC Implementation
The NSFG instrument collects detailed information on events, such as pregnancy outcomes, sexual
activity, and contraceptive use, by month over the past four years. Figure 1 shows the paper LHC used in
face-to-face interviews for 2022.

> back to Table of Contents

2

Figure 1. NSFG Paper Life History Calendar

Years and months appear across the top and question categories along the left side, forming a grid in
which respondents can mark life events. The calendar covers the current year and three previous years. A
column toward the left labelled “before 2019” is for recording relevant events that took place prior to the
reference period of interest.

Figure 2 is an example of our electronic version incorporated into the NSFG Blaise 5 questionnaire.

Figure 2. NSFG Electronic Life History Calendar Embedded with Blaise Questionnaire

> back to Table of Contents

3

Everything below the central scroll bar is programmed in Blaise, while above the bar is custom. A design
decision was made to have the calendar be above the question and scrollable, so that the calendar content
is large enough to read but does not take all the screen space. The electronic calendar is not a data entry
tool, but rather a graphical representation of responses that are entered into the Blaise survey instrument
and that correspond to the questions presented on each screen with the calendar view. Every part of the
screen is also available in Spanish—buttons, labels, month abbreviations, etc.

A tutorial, shown in Figure 3, is presented to respondents to help them understand how they can control
and use the calendar. It has many elements designed to replicate the paper version, and some
enhancements that are only possible with an electronic version. Of note, at the upper right is one control
to hide/show the calendar and another to display it in full screen (i.e., without any Blaise content). Along
the top are the “guide rows” with years and months, similar to the paper version. The respondent’s age is
shown and updates according to their date of birth. The “Before” column is also present as in the paper
version. The years displayed adjust according to the current year.

For visibility, a design decision was made to display only a portion of the calendar by default. Scroll bars
allow viewing more months and question categories.

As shown in Step 5, calendar items have hover text for further content. The calendar events stay visible
for the remainder of the questionnaire, including if the respondent backs up.

Figure 3. Respondent Instructions

3.2 LHC Architecture
The Blaise 5 site is a Single Page Application. We added custom elements and scripts to that page to
house and control the calendar. The LHC itself is hosted in a separate website on the same server, which
includes the chart. This is partly because Blaise 5 and the LHC have different reload requirements. For
example, changing languages requires us to reload the chart, but Blaise updates itself without reloading

> back to Table of Contents

4

the Blaise page. It also maintains a separation of concerns—of the user interface controls and monitoring
versus the chart functionality.

Figure 4 represents the structure. At the top of the diagram is the questionnaire. Above the center line are
changes we made to the webpage that Blaise generates. We create a placeholder (upper right) where the
calendar can be inserted, along with the custom buttons. The UI script (at center left) monitors the Blaise
page for changes to the item, page, case ID, language selection, and so on. It then requests updated data
from the calendar application (lower left).

Below the line is the separate calendar application. It gets data from the Blaise database and transforms it,
adds data for “guide” rows (such as years and months), and performs several UI customizations, including
grid line weights, styles, and colors.

The Calendar Page (lower right) is primarily a container for the chart, but it also receives messages and
writes logs to a paradata file when the buttons are used.

Figure 4. Application Structure

3.3 Blaise Interaction—Data & Design
A few factors are important to the interaction of the LHC with the Blaise instrument. First, it is essential
to use the Blaise session database. Only the session database has the latest values as they are being
entered.

> back to Table of Contents

5

Second, Blaise offers API calls to request values by item, such as with GetBlaiseItem(). For
comparatively large numbers of items, such as the use of specific contraceptives by month over a period
of years, we found this to be too slow. Instead, we access an entire block of items in one call to GetField()
and loop through them if the structure is known. For that reason, having a reliable data structure is
critical. The items displayed in the calendar are spread throughout the questionnaire, and questionnaires
change over time. Since we want a stable interface between Blaise and the calendar, we created a Blaise
block named “LHC” (Figure 5) that has copies of the values the calendar will need to access. Any time
one of those items is answered, its value is copied to the LHC block as part of the Blaise programming.
This way, they are in a reliable location in the database.

Figure 5. Blaise Block Defined for Calendar Interaction

> back to Table of Contents

6

The Blaise Resource Database was adjusted to work smoothly with the LHC. As mentioned, the script
monitors the Blaise page for changes. This is done via a footer that is invisible to the respondent. A
visible version is shown in Figure 6. The script reads the footer to get the case ID, page and item IDs, and
so on as they change. It also contains a directive of whether to display the entire calendar container
(which, for example, should not be visible on the screen before the calendar is introduced to the
respondent), including the show/hide and full-screen buttons.

Figure 6. Blaise Footer (Normally Invisible)

3.4 Collecting and Displaying Many Data Points across Years
One section in the instrument collects data for up to 48 months: every month in the past three years and
up to the interview month in the current year. A set of more than 20 questions is asked about
contraceptive use in the respondent’s life. To facilitate this task, the respondent is presented with a grid
where she clicks the box for the month(s) with sexual activities, and a checkmark appears in the box.
Then, for each selected contraceptive method, the respondent is asked to mark the months when it was
used (Figure 7).

A Blaise special procedure was developed to define columns and rows in the grid for the question. A hard
check is triggered in that procedure if any inconsistency is detected between the selected month(s) and the
previously reported sexual activity. An additional check may be executed if the respondent was pregnant
in the selected month(s). The LHC is updated with the collected information and the respondent can see
all birth control methods in one place, each on its own row, with letters designating the methods used
during the given month (e.g., “P” for pill, “C” for condom).

The Blaise procedure assigns row names for each specific year, replacing the standard row titles and
column numbers that are normally assigned. The procedure is also responsible for assigning data to fields
in the LHC. With supporting modifications to the Resource Database, the procedure selectively hides
checkboxes depending on the current date and respondent age; that is, for future months in the row for the
current year (as in the top row of the table in Figure 7), as well as for past months when the respondent
has already indicated she was not using contraceptives.

Figure 7. Condensed Interface for Collecting and Displaying Many Data Items

> back to Table of Contents

7

4. Electronic Calendar Evaluation
To better understand the use of a self-administered electronic LHC, and the life history calendar in
general, we embedded debriefing questions at the end of the NSFG female instrument asked of both web
and in-person interviewed respondents. Because mode of data collection is confounded with calendar
mode, this design did not allow for the direct comparison of estimates between web and face-to-face
(electronic vs. paper), but it presents an initial feasibility test that allows us to better assess the proportion
of web respondents who utilized the calendar, where it was used, and its ease of use.

To supplement the respondent debriefing questions, we examined paradata, such as screen size and
actions taken by respondents (e.g., minimize or enlarge the calendar, hide or show the calendar).

4.1 Paradata on Calendar Use
During the first year of data collection, we collected paradata on the usage of the show/hide and full-
screen buttons. In Figure 8, some respondent actions are outlined for visibility. We can look at the “show”
and “full-screen” buttons together as ways to view the calendar. As outlined in blue, the overall number
of respondents who ever used the show or full-screen buttons or ever used the hide button were about the
same. About half used both options (green outline). About 25% showed the calendar and never hid it,
while about 25% hid it and never showed it.

Figure 8. Calendar Use—Showing and Hiding

Figure 9 examines differences between screen sizes. Respondents using smaller screens were, predictably,
more likely to hide the calendar and less likely to use the full-screen option. Here, small is defined as
having a screen width of less than or equal to 600 pixels.

> back to Table of Contents

8

Figure 9. Calendar Use and Screen Size Comparison

4.2 Self-Reported Frequency of LHC Use
We asked respondents about the kinds of questions in which they found the calendar useful. Some results
are presented in Figure 10.

Figure 10. Calendar Use by Section

More than half reported using it in the section on sexual activity. About 40% used the LHC for questions
about contraceptive use, followed by pregnancy and relationship sections in the 30% range.

> back to Table of Contents

9

We also asked about the consistency of using the calendar (Figure 11). About a third of respondents
(orange slice) started using it, and then stopped. But about a quarter (blue) used it throughout the survey
and about another quarter (gray) didn’t use it at first, then began using it later.

Figure 11. Calendar Use

Finally, we asked about the ease of use. Results are shown in Figure 12. Just 3% found it extremely
difficult. While 17% found it somewhat difficult, 79% said it was either easy or somewhat easy to use.

Figure 12. Ease of Calendar Use

> back to Table of Contents

10

5. Conclusion
Blaise integration was successful, with customizations for usability and performance. We used the
GetField() Blaise API with indexing on larger blocks of data for improved performance. Custom data
structures storing copies of calendar data allowed us to align and freeze the programmatic interface
between the Blaise and calendar APIs.

Customizations to the Blaise instrument and environment enabled better user interface design and
improved integration with the calendar. Enhancements to the Blaise Resource Database control the
visibility of columns in grid data entry. Special Blaise procedures control the display of data entry
elements and assign data to specific fields.

While respondents sitting in person with an interviewer reported using the LHC significantly more than
CAWI respondents (34% reported not using the calendar in year one vs. 78% on the web), the LHC
allowed us to continue providing respondents with this memory aid during that period, as well as for the
ongoing data collection in which nearly 75% of interviews are completed on the web.

Those who reported using the electronic calendar mostly utilized it in the sections on sexual activity and
contraceptive use, followed by pregnancies and marriages/cohabitation. We detected significant
differences of calendar use by age, ethnicity, and education, with the youngest respondents (15–18 years
old) being the least likely to use the calendar, those with higher education being more likely to use their
own calendar or app, and Hispanics being more likely to use the calendar.

The electronic LHC seemed to be used more sporadically by respondents relative to the paper calendar—
more than half of the CAWI respondents (60%) reported using the calendar at some point, but not
throughout the survey. In contrast, only 38% of CAPI respondents reported using the calendar at some
point, and at least half used it throughout the survey.

6. References
Belli, R. F., Shay, W. L., & Stafford, F. P. (2001). Event history calendars and question list surveys: A
direct comparison of interviewing methods. Public Opinion Quarterly, 65(1), 45–74.

> back to Table of Contents

1

System To System Communication
Ralph van Geenen, Statistics Netherlands
WWW.CBS.NL/PS
ANNUAL / PRODUCTION STATISTICS RGS

1. Abstract

Save yourself time!

For the business questionnaire ‘Production Statistics,’ we have created a functionality that imports data
into the Blaise questionnaire. The data is existing data in the general accountancy software (e.g., ‘exact
Online’). This program can generate a ‘general calculating schema’ file (RCSFI file), which contains 40
to 60 percent of the information we are looking for.

Since April 2023, we have implemented a second method for importing data. More specifically, we use a
third-party website, which can directly log in to several accountancy software packages. This implies that
the manual import of an XML file is not needed anymore.

1.1 The Old Technique

• First, we use the ‘upload’ functionality of Blaise 5.8 and store the XML file in a ‘blob’ datatype.
• Second, we use a separate (WCF) service with use of the ‘alien’ function of Blaise to store that

data on an ‘internal’ CBS server.
• Third, the service transforms the information into PS variables. The RGS data contains elements

that have a 1:N relation to our information request. The service cumulates the information.
• Fourth, we use another (WCF) service to retrieve the information and convert it into a variable in

the questionnaire.
• Finally, we present a recap of the imported data. In case the respondent thinks: “No! This isn’t

correct,” he has the option to either clear the questionnaire and try again or choose not to utilize
this functionality.

1.2 The New Technique
The respondent selects his accountancy package from the list, logs in to the package, gives permission to
use the data, and finally ‘imports’ it into the questionnaire.

1.3 Presentation
In the presentation, I will provide a demo of the questionnaire. If someone is interested in the code, we
can schedule an appointment to further discuss this.

> back to Table of Contents

2

2. Introduction

2.1 The RCSFI Import into the Blaise Questionnaire/Response Burden
The thought behind this is to simplify this process for the respondent. Due to the implementation of this
functionality, respondents now have the capability to import data, thereby alleviating the need for manual
data entry. This new approach is more based on the bookkeeping perspective.

2.2 Historical Background
Several years ago, CBS considered the utilization of bookkeeping data in questionnaires.
Since 2016, there has been and continues to be a national standard of business reporting (SBR). This,
however, is not directly usable for questionnaires. Therefore, the Reference Classification System of
Financial Information (RCSFI) was implemented.

• RCSFI, or Referentie GrootboekSchema (RGS) in Dutch
• Developed in a public-private partnership as a nonmandatory standard in order to integrate and

automate administrative processes
• In the Netherlands, there is no legal prescribed format for bookkeeping—only specific reports
• RCSFI contains references for all ledgers for different reports of the Dutch government
• Furthermore, it can also be used for all kinds of reports, dashboards, KPIs, etc.
• RCSFI codes are (a part of) variables in the questionnaire
• A cross-table links all RCSFI codes to a variable in the questionnaire

In 2020, the RCSFI was implemented for the first time in the production statistics. The aim was to
achieve a 75 percent prefilling rate. Unfortunately, the required and desired information for CBS was not
available in the SBR/RGS standard. We, however, persevered and strongly believed that to ease the
process for the respondent, everything that can be imported and used should be imported in the
questionnaire.

> back to Table of Contents

3

2.3 2021
Figure 1. The Manual Import into The Questionnaire—Since PS20 (April 2021)

In the IBUD in April 2022, I presented this part.
1. Log in to the questionnaire and choose the option ‘import a RCSFI file.’
2. An instruction appears on the screen and tells you the steps that should be taken to complete the

import.
3. In the bookkeeping software, you first have to export a file (RCSFI bridge) and save it on the

desktop.
4. Go back to the questionnaire—if there was an automatic log off, log in again.
5. Push the button ‘select RCSFI Bridge.’
6. Select the file.
7. Import the file.
8. If successful, a summary appears.

2.4 2022
The manual import, more communication, and a video with instructions—Since PS21 (April 2022)

The same process as mentioned above, but with a video instruction included.

> back to Table of Contents

4

2.5 2023
The connected way—system to system—since PS22 (April 2023), a Dutch Transaction Ideal Method

In this solution, the respondents can log in to their own bookkeeping software accounts and ‘donate’ their
information to the questionnaire/Statistic Netherlands.

1. Choose your bookkeeping software. There are a few in the Netherlands. Almost all bookkeeping
software businesses are supported.

2. Log in with your own credentials.
3. Select your bookkeeping (correct financial year, correct business in case of accountancy office).
4. Push the button—import.
5. If successful, you can go back to the questionnaire (close the tab) and refresh the questionnaire

screen.
6. If successful, a summary appears.

3. Used Techniques
Videos: We have implemented an instruction video to show respondents how to correctly use the RCSFI.
This video describes the way the data is exported from the bookkeeping software and imported into the
questionnaire. Based on the results, we could conclude that none of the respondents watched the
instruction video. Therefore, we do not use this anymore.

> back to Table of Contents

5

Alien Procedures: To send datafiles to a web service, to retrieve data from a web service.

Redirects: Redirect from web browser to the Speedbooks website. This includes some parameters for
identification (e.g., respondent number, financial year, and the accountancy software package). This
ensures that the Speedbook logs in to the right package.

WCF Services: This is the web service that processes the RCSFI data and converts the bookkeeping data
into usable questionnaire data (key value pairs).

RESTAPI: A modern way of communication that is used between Speedbooks/bookkeeping and the RGS
Service. In the future, this will also serve as a substitute technique for the WCF RGS Service.

4. Next Steps/Future Goals
Our aim is to use the shortened version of the PS for small businesses. This shortened version can be
fully—or to be more precise, 100 percent—completed by the RGS import function.

The RCSFI file contains more information than we need in the questionnaire. This enables the
statistician/analyst to use more specific and detailed information. However, this raises the following
important question: Are we permitted to use all this specific information?

In the past, we also did other projects like this. One of them was the John Deere project. At that project,
we connected to an external John Deere API (third party), did an ‘OAuth Authentication’ process within,
and got farm data out of the cloud that directly came from the John Deere farm machines. This project
was stopped because of the quality of the data. Nevertheless, the process was useful to us and to Blaise.

> back to Table of Contents

1

Replacing Manipula in Blaise 5
Siu Chong Wan and Ryan Webb, Westat

Presenter: Siu Chong Wan

We have done a lot of tricky things in Blaise 4 by calling Manipula procedures from within the instrument
that the data model alone cannot handle, for example, showing dialog, calling a third-party program and
importing its output into the in-memory data of the ongoing interview, and starting different instruments
in order with conditions. In Blaise 5, a lot of these can be accomplished with the use of the resource
database.

Although Blaise 5 Manipula is still a very powerful tool, Manipula process scripts cannot be used in
browsers. This paper discusses how, with the resource database, hopefully we can have similar flexibility
in both windows and browsers on some occasions.

1. Things We Tried So Far
1.1 Replacing Manipula Dialog
In Blaise 4, we used the Maniplus Dialog to display text information, display images and let the user
browse through it, obtain information from the user, and enter data directly into a Blaise data set. To do
this, we tied the Manipula procedure that defined the dialog box to the type in the data model properties.

In Blaise 5, with the resource database, is the Maniplus Dialog a necessity for this purpose? A Page
Template can display extra elements with label control, image control, and even video control. This is
useful if we do not want to maintain multiple projects and packages to run Manipula procedures.
However, that is not to say that displaying a page template from the resource database can totally replicate
the experience of displaying a Maniplus Dialog.

A Maniplus Dialog can overlap the data entry window as a second window; the use of a master page
template or a custom page template leads to a new page in the same window. While both can display the
same elements and collect the same data, visually they are two different experiences. With a Maniplus
Dialog, the user can tell they are being diverted to a new window while they can still see the original data
entry window in the background; with a new page (even supported by a different page template for a
different look and feel) in the same window, everything just seems to be part of the same flow to the user.
Where one’s preference lies depends on the situation and the purpose of the page.

In addition, Maniplus Dialog still has the advantage of being able to define precise dialog height and
width that we cannot do in a page template.

1.2 Running Third-Party Programs
In Blaise 4, we used the Maniplus Run function to execute external applications. To do so during runtime,
we tied the Manipula procedure in the data model properties to the type that needs to run the third-party
application.

The introduction of the StartLocalProcess action in Blaise 5.13 opened the door to a whole new world.
The StartLocalProcess action is very handy for the purpose of running third-party applications. It
eliminated the needs for a Manipula procedure to run external applications. In the middle of a survey, we
can introduce something that cannot be programmed in Blaise, or something that simply can be
programmed more efficiently outside of Blaise.

> back to Table of Contents

2

With the Blaise 5 SessionData API, we should be able to create external programs that pass data between
the Blaise data in the current session and the external programs. What happens in Vegas does not have to
stay in Vegas anymore. We might be able to bring home the money.

However, it is also worth noting that, like Manipula, the StartLocalProcess action does not work in
browsers.

1.3 Flexible Routing
We always count on Blaise to follow the rules. In a Blaise survey, a field cannot be on route more than
once in the rules. Rules are checked constantly to ensure data integrity. That is a strength. However, this
can also become inflexible on occasion. When needed, we would like to not follow the rules.

In Blaise 4, the easiest we could do might be the INVOLVING instruction in an edit check. But that has
to be presented as an error, not a choice. Of course, the next thing we could always count on was, again,
Manipula because we could use the Maniplus instruction SETACTIVEFIELD.

In Blaise 5, with various resource database actions, it is relatively easy to change the flow of routing when
necessary. For instance, rather than asking the respondent to move back many pages to change something,
we can let them press a button to jump back to a certain point. With the GotoField action in Blaise 5, we
can provide respondents with the opportunity to jump between questions without triggering any errors or
maintaining Manipula scripts.

However, this happens while the rules are still running constantly. So we need to keep in mind that what
we are doing outside of the rules still needs to be in compliance with the rules.

1.4 Running Multiple Surveys in Order
In Blaise 4, when we need to run multiple instruments together in a certain order, we would use the
Maniplus Edit function/method to start multiple data entry sessions in one sitting. This usually happens
outside of the instrument in Manipula.

In Blaise 5, we can use the StartSurvey action for this purpose without the help of Manipula. The
StartSurvey action can be used in more than just the OnEnd event. Using the StartSurvey action in the
OnEnd event, we can easily run multiple surveys from start to end in one order. Using the StartSurvey
action in the OnLoad event of a page, or an event triggered by a layout control such as an OnClick event
of a button, we do not have to wait until a survey is completed before the next survey starts. The current
session will end and the survey data will be saved before the StartSurvey action is performed.

We can still see the value of controlling the flow of multiple surveys in Manipula with the Edit
function/method if it is preferable to keep the programming of that flow in one place, that is, one
Manipula project. However, using the StartSurvey action outside of Manipula gives us the flexibility of
when, where, and how different surveys start consecutively. More significantly, the StartSurvey action
also works in web surveys, while Manipula still cannot.

2. Examples
2.1 Replacing Manipula Dialog Boxes with Parallel Blocks
In Blaise 4, we used Maniplus Dialog to collect roster member information in a dialog box, where we
could offer options of actions like add, edit, and delete. In this example, we use a combination of parallel
blocks and resource database actions to collect a roster of medicines. This involves off-route flows that
are transparent to the respondents.

> back to Table of Contents

3

2.1.1 Data Model
In the data model, we define a parallel block for each individual “dialog” path.

Each parallel block adds/edits/deletes medicines and saves the medicines back to the Main parallel block.
As a result, the data collected in the parallel blocks are disposable.

2.1.2 Resource Database
In the resource database, we can use menu bar items, buttons, or keyboard shortcuts to provide access to
the parallel blocks. In our example, we use menu bar items with a shortcut property to lead to the parallel
blocks and other off-route flows.

<MenuItem Text="Add" Shortcut="Ctrl+A" Visibility="{Expression IF
ENDSWITH(State.ActiveFieldName, 'Roster') THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action SetParallel('AddBlock')}" />

<MenuItem Text="Edit" Shortcut="Ctrl+E" Visibility="{Expression IF
ENDSWITH(State.ActiveFieldName, 'Roster') THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action SetParallel('EditBlock')}" />

<MenuItem Text="Delete" Shortcut="Ctrl+D" Visibility="{Expression IF
ENDSWITH(State.ActiveFieldName, 'Roster') THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action SetParallel('DeleteBlock')}" />

<MenuItem Text="No Match" Shortcut="Ctrl+Z" Visibility="{Expression IF
Page.ActiveField.TypeName = 'TLookupString' THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action AssignField('NoMatchButton', '1',
{Expression 1});Save();GotoField('AddBlock.PMedNoMatchString')}" />

> back to Table of Contents

4

Sending the user to a parallel block is the easy part. Clearing out the data from the parallel blocks while
keeping the data in the Main parallel could take some effort. Of course, we can always create arrays of the
parallel blocks so that each call of the parallel block is a new instance, rather than clearing out anything.
But that also means we would be keeping duplicated data that are not necessary, unless it is desirable to
keep the history of all the add/edit/delete instances.

2.1.3 Result
We first start in the Main parallel.

Either CTRL-A or the “Add” on the menu bar leads us to the parallel AddBlock.

> back to Table of Contents

5

Select BENADRYL and click the forward arrow.

Confirm adding and plan to add another medicine.

Select TYLENOL this time and move forward.

> back to Table of Contents

6

The end of the parallel AddBlock leads us back to the Main parallel.

Either CTRL-D or “Delete” on the menu bar leads us to the parallel DeleteBlock.

> back to Table of Contents

7

Select BENADRYL to delete.

The end of the parallel DeleteBlock leads us back to Main parallel.

> back to Table of Contents

8

Click the forward arrow to the next page in the Main parallel.

We see the medicines that we added but not the ones we deleted.

2.2 Off-Route to Go Back to an Earlier Question
In this example, we collect family household member information on the phone one by one. When the
user stops adding more people, we ask them to confirm. When the confirmation is denied, rather than
asking the user to keep pressing the “back” button to move backward to the beginning to correct the
answers, we lead the user back to the page where the first household member was collected.

To the respondents, this happens when they simply answer the questions. They do not need to use extra
buttons or keys to go off-route.

2.2.1 Resource Database
In the resource database, we created master page template PageGoToFieldMobile that goes to a certain
field on load. We are hardcoding the field being redirected here for simplicity. However, with the addition
of a page template parameter or a conditional action, this page can easily serve the purpose of redirecting
to more than one field.

<MasterPageTemplate DesignWidth="320" DesignHeight="480"
OnLoad="{Action
GotoField('FSQ.PersonTable.HHRoster[1].FSQ010IntroMobile')}">

2.2.2 Data Model
In the data model, after confirmation is denied, we route to a dummy page that uses the above mentioned
PageGoToFieldMobile page template to go back to the first household member collected.

> back to Table of Contents

9

2.2.3 Result

And a few more household members later …

> back to Table of Contents

10

After the answer “No” is selected and the “Next” button is clicked, we are led back to the first household
member collected.

Now, let us remove Carl.

> back to Table of Contents

11

We click the “Next” button a few times to move forward to Carl’s page.

We click the “Remove this person” button, and then we click the “Next” button a few times to move back
to the confirmation page.

Now we click the “Yes” button to confirm and move forward.

> back to Table of Contents

12

It routes to the next page.

To make this more sophisticated and less for the respondent to navigate, we can also make the collected
household member roster available as an enumerated type question for the respondent to choose which
household member they would like to go back to change.

3. Conclusions

With the resource database, it is relatively easy to run third-party programs, navigate off-route, or even
start multiple surveys given different conditions consecutively. We just need to be mindful of covering all
grounds, especially when we try to program routing outside of the rules.

However, while we can program similar functionality and collect the same data without Manipula Dialog,
I cannot say we can really recreate the experience of a Manipula Dialog box yet without Manipula. It is
because there are controls that we do not have outside of Manipula Dialog like sizing of the window.
Moreover, the laying over of windows cannot happen within one survey project.

Unfortunately, Manipula still does not work in browsers. So the web experience would still be somewhat
limited when compared to the Windows DEP experience.

> back to Table of Contents

1

Replacing Manipula in Blaise 5
Siu Chong Wan and Ryan Webb, Westat

Presenter: Siu Chong Wan

We have done a lot of tricky things in Blaise 4 by calling Manipula procedures from within the instrument
that the data model alone cannot handle, for example, showing dialog, calling a third-party program and
importing its output into the in-memory data of the ongoing interview, and starting different instruments
in order with conditions. In Blaise 5, a lot of these can be accomplished with the use of the resource
database.

Although Blaise 5 Manipula is still a very powerful tool, Manipula process scripts cannot be used in
browsers. This paper discusses how, with the resource database, hopefully we can have similar flexibility
in both windows and browsers on some occasions.

1. Things We Tried So Far
1.1 Replacing Manipula Dialog
In Blaise 4, we used the Maniplus Dialog to display text information, display images and let the user
browse through it, obtain information from the user, and enter data directly into a Blaise data set. To do
this, we tied the Manipula procedure that defined the dialog box to the type in the data model properties.

In Blaise 5, with the resource database, is the Maniplus Dialog a necessity for this purpose? A Page
Template can display extra elements with label control, image control, and even video control. This is
useful if we do not want to maintain multiple projects and packages to run Manipula procedures.
However, that is not to say that displaying a page template from the resource database can totally replicate
the experience of displaying a Maniplus Dialog.

A Maniplus Dialog can overlap the data entry window as a second window; the use of a master page
template or a custom page template leads to a new page in the same window. While both can display the
same elements and collect the same data, visually they are two different experiences. With a Maniplus
Dialog, the user can tell they are being diverted to a new window while they can still see the original data
entry window in the background; with a new page (even supported by a different page template for a
different look and feel) in the same window, everything just seems to be part of the same flow to the user.
Where one’s preference lies depends on the situation and the purpose of the page.

In addition, Maniplus Dialog still has the advantage of being able to define precise dialog height and
width that we cannot do in a page template.

1.2 Running Third-Party Programs
In Blaise 4, we used the Maniplus Run function to execute external applications. To do so during runtime,
we tied the Manipula procedure in the data model properties to the type that needs to run the third-party
application.

The introduction of the StartLocalProcess action in Blaise 5.13 opened the door to a whole new world.
The StartLocalProcess action is very handy for the purpose of running third-party applications. It
eliminated the needs for a Manipula procedure to run external applications. In the middle of a survey, we
can introduce something that cannot be programmed in Blaise, or something that simply can be
programmed more efficiently outside of Blaise.

> back to Table of Contents

2

With the Blaise 5 SessionData API, we should be able to create external programs that pass data between
the Blaise data in the current session and the external programs. What happens in Vegas does not have to
stay in Vegas anymore. We might be able to bring home the money.

However, it is also worth noting that, like Manipula, the StartLocalProcess action does not work in
browsers.

1.3 Flexible Routing
We always count on Blaise to follow the rules. In a Blaise survey, a field cannot be on route more than
once in the rules. Rules are checked constantly to ensure data integrity. That is a strength. However, this
can also become inflexible on occasion. When needed, we would like to not follow the rules.

In Blaise 4, the easiest we could do might be the INVOLVING instruction in an edit check. But that has
to be presented as an error, not a choice. Of course, the next thing we could always count on was, again,
Manipula because we could use the Maniplus instruction SETACTIVEFIELD.

In Blaise 5, with various resource database actions, it is relatively easy to change the flow of routing when
necessary. For instance, rather than asking the respondent to move back many pages to change something,
we can let them press a button to jump back to a certain point. With the GotoField action in Blaise 5, we
can provide respondents with the opportunity to jump between questions without triggering any errors or
maintaining Manipula scripts.

However, this happens while the rules are still running constantly. So we need to keep in mind that what
we are doing outside of the rules still needs to be in compliance with the rules.

1.4 Running Multiple Surveys in Order
In Blaise 4, when we need to run multiple instruments together in a certain order, we would use the
Maniplus Edit function/method to start multiple data entry sessions in one sitting. This usually happens
outside of the instrument in Manipula.

In Blaise 5, we can use the StartSurvey action for this purpose without the help of Manipula. The
StartSurvey action can be used in more than just the OnEnd event. Using the StartSurvey action in the
OnEnd event, we can easily run multiple surveys from start to end in one order. Using the StartSurvey
action in the OnLoad event of a page, or an event triggered by a layout control such as an OnClick event
of a button, we do not have to wait until a survey is completed before the next survey starts. The current
session will end and the survey data will be saved before the StartSurvey action is performed.

We can still see the value of controlling the flow of multiple surveys in Manipula with the Edit
function/method if it is preferable to keep the programming of that flow in one place, that is, one
Manipula project. However, using the StartSurvey action outside of Manipula gives us the flexibility of
when, where, and how different surveys start consecutively. More significantly, the StartSurvey action
also works in web surveys, while Manipula still cannot.

2. Examples
2.1 Replacing Manipula Dialog Boxes with Parallel Blocks
In Blaise 4, we used Maniplus Dialog to collect roster member information in a dialog box, where we
could offer options of actions like add, edit, and delete. In this example, we use a combination of parallel
blocks and resource database actions to collect a roster of medicines. This involves off-route flows that
are transparent to the respondents.

> back to Table of Contents

3

2.1.1 Data Model
In the data model, we define a parallel block for each individual “dialog” path.

Each parallel block adds/edits/deletes medicines and saves the medicines back to the Main parallel block.
As a result, the data collected in the parallel blocks are disposable.

2.1.2 Resource Database
In the resource database, we can use menu bar items, buttons, or keyboard shortcuts to provide access to
the parallel blocks. In our example, we use menu bar items with a shortcut property to lead to the parallel
blocks and other off-route flows.

<MenuItem Text="Add" Shortcut="Ctrl+A" Visibility="{Expression IF
ENDSWITH(State.ActiveFieldName, 'Roster') THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action SetParallel('AddBlock')}" />

<MenuItem Text="Edit" Shortcut="Ctrl+E" Visibility="{Expression IF
ENDSWITH(State.ActiveFieldName, 'Roster') THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action SetParallel('EditBlock')}" />

<MenuItem Text="Delete" Shortcut="Ctrl+D" Visibility="{Expression IF
ENDSWITH(State.ActiveFieldName, 'Roster') THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action SetParallel('DeleteBlock')}" />

<MenuItem Text="No Match" Shortcut="Ctrl+Z" Visibility="{Expression IF
Page.ActiveField.TypeName = 'TLookupString' THEN 'Visible' ELSE
'Collapsed' ENDIF}" OnClick="{Action AssignField('NoMatchButton', '1',
{Expression 1});Save();GotoField('AddBlock.PMedNoMatchString')}" />

> back to Table of Contents

4

Sending the user to a parallel block is the easy part. Clearing out the data from the parallel blocks while
keeping the data in the Main parallel could take some effort. Of course, we can always create arrays of the
parallel blocks so that each call of the parallel block is a new instance, rather than clearing out anything.
But that also means we would be keeping duplicated data that are not necessary, unless it is desirable to
keep the history of all the add/edit/delete instances.

2.1.3 Result
We first start in the Main parallel.

Either CTRL-A or the “Add” on the menu bar leads us to the parallel AddBlock.

> back to Table of Contents

5

Select BENADRYL and click the forward arrow.

Confirm adding and plan to add another medicine.

Select TYLENOL this time and move forward.

> back to Table of Contents

6

The end of the parallel AddBlock leads us back to the Main parallel.

Either CTRL-D or “Delete” on the menu bar leads us to the parallel DeleteBlock.

> back to Table of Contents

7

Select BENADRYL to delete.

The end of the parallel DeleteBlock leads us back to Main parallel.

> back to Table of Contents

8

Click the forward arrow to the next page in the Main parallel.

We see the medicines that we added but not the ones we deleted.

2.2 Off-Route to Go Back to an Earlier Question
In this example, we collect family household member information on the phone one by one. When the
user stops adding more people, we ask them to confirm. When the confirmation is denied, rather than
asking the user to keep pressing the “back” button to move backward to the beginning to correct the
answers, we lead the user back to the page where the first household member was collected.

To the respondents, this happens when they simply answer the questions. They do not need to use extra
buttons or keys to go off-route.

2.2.1 Resource Database
In the resource database, we created master page template PageGoToFieldMobile that goes to a certain
field on load. We are hardcoding the field being redirected here for simplicity. However, with the addition
of a page template parameter or a conditional action, this page can easily serve the purpose of redirecting
to more than one field.

<MasterPageTemplate DesignWidth="320" DesignHeight="480"
OnLoad="{Action
GotoField('FSQ.PersonTable.HHRoster[1].FSQ010IntroMobile')}">

2.2.2 Data Model
In the data model, after confirmation is denied, we route to a dummy page that uses the above mentioned
PageGoToFieldMobile page template to go back to the first household member collected.

> back to Table of Contents

9

2.2.3 Result

And a few more household members later …

> back to Table of Contents

10

After the answer “No” is selected and the “Next” button is clicked, we are led back to the first household
member collected.

Now, let us remove Carl.

> back to Table of Contents

11

We click the “Next” button a few times to move forward to Carl’s page.

We click the “Remove this person” button, and then we click the “Next” button a few times to move back
to the confirmation page.

Now we click the “Yes” button to confirm and move forward.

> back to Table of Contents

12

It routes to the next page.

To make this more sophisticated and less for the respondent to navigate, we can also make the collected
household member roster available as an enumerated type question for the respondent to choose which
household member they would like to go back to change.

3. Conclusions

With the resource database, it is relatively easy to run third-party programs, navigate off-route, or even
start multiple surveys given different conditions consecutively. We just need to be mindful of covering all
grounds, especially when we try to program routing outside of the rules.

However, while we can program similar functionality and collect the same data without Manipula Dialog,
I cannot say we can really recreate the experience of a Manipula Dialog box yet without Manipula. It is
because there are controls that we do not have outside of Manipula Dialog like sizing of the window.
Moreover, the laying over of windows cannot happen within one survey project.

Unfortunately, Manipula still does not work in browsers. So the web experience would still be somewhat
limited when compared to the Windows DEP experience.

> back to Table of Contents

1

How Creating a Pipeline for Automatically Analyzing and Sharing
Paradata Facilitated the Ability to Make Data-Driven Adjustments
to Improve Data Collections
Elise Alstad, Erdal Kilicdogan, Sara Grimstad, Katharina Rossbach, Gezim Seferi, Marta Krawczynska,
Statistics Norway

1. Abstract
Paradata has proven key to managing dynamic data collections, as we can use the paradata to identify and
measure nonresponse and measurement errors. However, paradata contains large amounts of unstructured
data, and it can be resource-intensive to extract and structure the data. We therefore found that we needed
a robust and efficient process for extracting, cleaning, storing, and analyzing paradata. Using Python with
Google Cloud Storage services, we created a data pipeline that synchronizes paradata from Blaise daily,
parses it, and stores it in the cloud. By having up-to-date paradata, we can gain insightful information
about the data collection process as it progresses. For instance, using Audit Trail data with sample data,
we assess nonresponse bias for different demographic groups. Likewise, by using Dial History data, we
analyze the outcome of each call and initiate measures based on their effectiveness. To make information
about the data collection available to all stakeholders, irrespective of coding experience, results from the
paradata analysis are shared to an internal web page that is updated daily. By creating an automatic
pipeline that allows colleagues to evaluate the data collection process, we have made it easier to make
data-driven decisions that adjust for bias and measurement errors. Because we use Python, which is an
open-source programming language, aspects of our pipeline can be implemented by others without any
cost. Similarly, we hope that sharing the journey of how we created the pipeline and the benefits we saw
from it can be useful for other Blaise users.

2. Introduction
Data collection demands significant resources in terms of both cost and time, and it is therefore important
to understand how to improve data collection processes. Paradata can be used to understand respondent
behavior and enhance survey questionnaires to gain higher survey quality, as well as to monitor and
identify areas for improvement to effectively manage data collections dynamically (Kreuter, Couper, &
Lyberg, 2010). At Statistics Norway, we have used paradata from Dial History and Audit Trail, and we
will refer to these data sources when we use the term paradata. These data sources include all call records,
actions that the interviewer and respondents perform in the survey, and the timestamps for these actions.
Post-survey analyses of paradata will help us understand how to improve the data collection process for
next time. But by using real-time, or nearly real-time, paradata, we can help stakeholders to make changes
during data collection in ongoing surveys (Schouten, Peytchev, & Wagner, 2017). While there are
numerous uses of paradata (see Hunt, 2016; Cheung et al., 2016; Kreuter, Couper, & Lyberg, 2010) at
Statistics Norway, we have focused on developing the use of paradata in two main areas:

• Improving survey questionnaires by understanding respondent behavior in surveys.
• Dynamic management of surveys by monitoring and adjusting for nonresponse bias.

When we started using paradata, the initial step was to export paradata from Blaise, and here we noticed
challenges concerning the sheer volume of data and database access. Querying Audit Trail data from large
surveys demanded a substantial share of the server capacity, resulting in slower loading time for
interviewers. Secondly, we faced challenges related to database access because colleagues outside of the
Blaise developer team required access to the paradata. However, as the database with the schemas for
Audit Trail also included other schemas, it was unideal that too many individuals would be given access

> back to Table of Contents

2

to the database. Subsequently, only a limited number of colleagues were given access and could export
Audit Trail and Dial History data. Moreover, the individuals who could export paradata had to be cautious
about the amount of data they exported while also aiming to export the data during periods when few
interviewers were active to avoid slow loading speed for interviewers. Thus, we realized that we needed
to develop an alternative solution that would facilitate easier access to paradata.

The team tasked with utilizing paradata had several objectives, one of which was to provide colleagues in
the department with an up-to-date overview of the data collection. We started by developing Python
programs that would generate data collection reports using call history data from Dial History. However,
the program reports were not widely used, mainly due to some colleagues perceiving Python as a barrier
due to their unfamiliarity with the programming language. Additionally, considering the sensitivity of
paradata, we wished to provide stakeholders with reports without giving them access to the data itself,
which was required to run the program reports. To achieve this, we recognized the need to create a way to
share reports without requiring users to run the program or access the data. Thus, we set out to create a
web page with aggregated results over the data collection.

Furthermore, as some colleagues wished to analyze the data themselves, we saw that starting from scratch
with each analysis would be inefficient. We therefore developed small Python program modules that
could assist users with analyzing the paradata. To ensure accessibility and to encourage more reuse of
code, all team members work within one GitHub repository. By developing programs that should work on
all instruments and require little coding expertise to run, we have created a versatile solution that can
accommodate the needs of colleagues who are involved in different parts of the data collection process.
By establishing this pipeline, project managers would receive better support in dynamically managing
data collection, and survey methodologists and Blaise developers could more easily access and analyze
paradata, facilitating data-driven decisions to improve surveys.

One of Statistics Norway’s digitalization strategies includes implementing Cloud Services and making the
shift toward using open-source programming languages. Thus, when creating this pipeline, we decided to
use Google Cloud Services and develop the programs in Python. However, aspects of this pipeline can be
implemented without the use of Cloud Services. The first part of the article illustrates an overview of the
pipeline structure. Next, we share some experiences of how paradata has been used by project managers
and survey methodologists to dynamically manage data collection and to improve survey questionnaires.
Finally, we summarize the positive effects we have seen from implementing the pipeline and discuss our
plans for enhancing the pipeline.

3. Paradata Pipeline
In this section, we will explain how the pipeline is set up. The program code we have used for the pipeline
is included in the Appendix. The initial step of the pipeline involves exporting data from our on-premises
Blaise server. Next, data is exported to a storage system in the Google Cloud Platform (GCP). Then, the
following steps of the pipeline are completed using solutions from Statistics Norway’s new cloud-based
data platform (DAPLA). In short, the bullet points below and Figure 1 summarize the steps of our
pipeline:

• Exporting data from Blaise to GCP
• Transferring data from the source bucket to the production bucket in GCP
• Developing reports and programs in JupyterLab
• Sharing daily results to the internal web page

Dial History data is parsed in Step 1, and Audit Trail data is parsed in Step 2.

> back to Table of Contents

3

Figure 1. Pipeline from Blaise to GCP

Before explaining the steps in the pipeline, we will first outline the storage structure we use in GCP.

3.1 Using the Google Cloud Platform Structure
In the GCP, a “bucket” is a unit for containing data that serves the same purpose as a folder. All data in
Google Cloud must be stored and organized within these buckets. Essentially, a bucket functions as a
structured folder, facilitating the organization and management of different data files. Moreover, we have
two buckets for different data structures: unmanipulated and manipulated data. By using different buckets
for unmanipulated and manipulated data, we can keep backups of the unmanipulated data where only a
few individuals have access. Since the unmanipulated data are the basis for all our analysis and
manipulation, having this data in a separate bucket ensures that we have a reliable reference point.

3.1.1 Source Bucket
The source bucket contains unmanipulated paradata from Blaise and select categorical sample data
variables, such as age group, region, education level, and gender. Only two people have permission to
read, write, or delete files in this bucket.

3.1.2 Production Bucket
In the production bucket, we store manipulated data from the source bucket and data with the select
sample variables. Only colleagues who need to use these data are given access to read, write, or delete
data in this bucket.

> back to Table of Contents

4

3.2 Exporting Data from Blaise to Google Cloud Platform
The paradata files are exported from the Blaise databases and then stored as CSV files on an on-premises
server. To export the paradata from Blaise, we use Code 1 (see the Appendix) for Audit Trail data and
Code 2 (see the Appendix) for Dial History. We use Crontab to automatically schedule the export of the
paradata each night. We then use GCP’s tool “transfer job” to automatically transfer the data from our on-
premises server to the source bucket in GCP. Once this step of the pipeline is completed, Audit Trail data
and Dial History data are stored as CSV files in the source bucket.

3.3 Transferring Data from the Source Bucket to the Production Bucket in GCP
The next step in the pipeline is to transfer data in GCP from the source bucket and store it as Parquet files
in the production bucket. We have utilized a solution created by Statistics Norway’s data platform team
that uses Cloud Run in GCP to automate this step. The solution allows a team to write a script that is
triggered when a new file is added to the source bucket. For the Audit Trail data, we have developed a
script (see Code 3 in the Appendix) that reads the data from the source bucket, parses the data, and then
stores the parsed data in the production bucket. Similarly, for Dial History data, we have developed a
script that reads the CSV file from the source bucket and stores it as a Parquet file in the production
bucket.

3.3.1 Parsing Audit Trail Data
As the Audit Trail data from Blaise is inadequate for effective analysis, we have parsed the paradata to a
structure more suitable for analysis using a script we refer to as the paradata parser (see Code 3 in the
Appendix). In the unmanipulated Audit Trail–level data, shown in Table 1, we can see that the “Content”
column contains information about the action. The content of the “Content” column is structured as
XML-formatted data.

To extract and structure the information in the “Content” column, we use the Python XML package
xml.etree.ElementTree. The paradata parser script processes the XML content in the “Content” column of
the input dataframe, extracting attributes and tags, and creates a new dataframe with the columns “event”,
“KeyValue”, “TimeStamp”, “SessionId”, and “InstrumentId”, in addition to columns from the attributes
as shown in Tables 2 and 3. The parser iterates through each row, creating a new column for each new
attribute and adding the attribute’s value to the corresponding row. Each tag represents an event type and
is included in the “event” column. The paradata parser organizes the data into the structure shown in

> back to Table of Contents

5

Tables 2 and 3. To enhance readability, the data is split into two separate tables. Also, the column “OS”
would contain more information, but for viewing purposes, the text has been shortened.

Table 1. Audit Trail Data from Blaise

Tables 2 and 3. Parsed Audit Trail Data

An advantage of the paradata parser, in contrast to programs that are dependent on regular expressions or
fixed string/column position to extract information from the “Content” column, is that the paradata parser
automatically creates new columns as it iterates over the data and encounters new attributes. This
flexibility ensures that the program can process data with different Audit Trail–level settings. The
paradata parser program has worked with data that has “Page”, “Field”, and “Keyboard” as the Audit
Trail–level setting. By utilizing the paradata parser, the pipeline can process all our surveys, each
potentially having different Audit Trail–level configurations, thus ensuring flexibility.

Briefly summarized, each night, data is extracted from Blaise using Crontab and then stored in the GCP
source bucket. Subsequently, the paradata parser script (see Code 3 in the Appendix) and the solution
offered by Statistic Norway’s data platform team are employed to parse and transfer the data to the
production bucket. As a result, we have updated data that is ready to be analyzed each day.

> back to Table of Contents

6

3.4 Developing Reports and Programs in JupyterLab
We access and analyze the paradata in a JupyterLab environment within Statistics Norway’s cloud-based
data platform. JupyterLab’s interactive computing environment allows us to combine code, visualizations,
and explanatory text in a single Jupyter Notebook. The development of new program reports and our web
page is done in the JupyterLab environment in Statistics Norway’s cloud-based data platform.

As we focus on developing scripts that contain standardized code that work with all surveys, all team
members work within one GitHub repository and aim to develop analyses that can be run on various
surveys. Moreover, we use Poetry, a tool for package management in Python, to ensure that every team
member works with the same set of libraries. By using Statistics Norway’s JupyterLab environment and
using GitHub for version control, team members find it easy to collaborate on developing code.

When we initially started to analyze paradata, we often found ourselves repeatedly writing and running
code for the same or similar tasks when analyzing the data. Therefore, our team decided to focus on code
modularization. Code modularization involves creating modules, which are self-contained units of code
that promote reusability and organization. Thus, we aim to identify repeated tasks and write this into
modules. The infrastructure of our GitHub repository is set up to be flexible for the user, with modules
stored within one folder so they can be imported and used when the user is working in the Jupyter
Notebook. Thus, code does not need to be copied and pasted between users or Jupyter Notebooks. For
instance, two modules are frequently used when analyzing paradata: data query and paradata
manipulation.

As data from each day is stored as separate files in the production bucket, we have created a program (see
Code 5 in the Appendix) that queries all the data for a specific survey. The program allows colleagues to
query all the data for the specific survey anddata in between two dates, before a specific date, or after a
specific date.

Moreover, the data obtained from the paradata parser may sometimes be insufficient for direct analysis,
so we made a module (see Code 4 in the Appendix) to manipulate the paradata, creating a more suitable
structure for analysis. The module performs various operations, such as sorting observations by SessionId
and TimeStamp, filling values of PageIndex and FieldName, and creating a new column labeled
“diff_time” to calculate time frames between consecutive observations within each session. The Tables 3
and 4 show how the paradata looks after applying the module. For viewing purposes, the dataset is split
into two tables.

As we aim to continually enhance manipulation processes and conduct quality checks on our programs,
we wished to minimize manipulation of the paradata in Step 2 of our pipeline and to instead perform data
manipulation in the JupyterLab environment in Step 3. This approach ensures uniformity in the structure
of data within the production bucket while we continually develop our code for processing and analyzing
paradata.

3.5 Sharing Daily Results to Internal Web Page
We wished to make it easier for project managers and field staff to see an updated overview of the data
collection. Moreover, it was important that seeing daily results should not require any coding skills or
access to the actual data. Thus, we decided to create a web page where we could share reports with key
metrics for the data collection.

> back to Table of Contents

7

Tables 3 and 4. Manipulated Paradata

We developed the internal web page by using Quarto1 and host it with GitHub Pages.2 Quarto is an open-
source solution that combines markdown text and executable Python or R code. When rendering a Quarto
file, code is executed, and the output of the code and the markdown text is rendered to HTML files. The
collection of HTML files is combined into a complete web page that is hosted with GitHub Pages. As the
web page is static, we update it every day by rendering and publishing the complete GitHub repository
using Quarto’s render and publish commands. By using Quarto, we can utilize the Python reports we
create in Step 3 in the JupyterLab environment and then transfer the code to Quarto files for our web
page.

Figure 2 shows a screenshot of our web page with key metrics for ongoing surveys. Each survey
instrument is represented on the left, and the user can click on the page to view the instrument they wish
to see. The figure shows four different figures of CATI time use for the instrument. On the right, we can
see an index of the possible reports available for the instrument.

Quarto and GitHub Pages were chosen due to their ease of use, thereby reducing the need for IT support
during setup. Furthermore, GitHub Pages guarantees restricted access solely to authenticated employees
of Statistics Norway via their GitHub accounts. While we aim to build a more comprehensive solution in
the future, such as an interactive dashboard application, the current solution accomplishes our main
objective: sharing results and an overview of the data collection process to colleagues without the need
for coding or access to the data.

1 https://quarto.org/
2 https://docs.github.com/en/enterprise-cloud@latest/pages/getting-started-with-github-pages/about-github-pages

> back to Table of Contents

8

Figure 2. Screenshot of Our Internal Web Page

4. How The Pipeline Is Used
Creating the pipeline allows colleagues to see daily updates of the data collection. Additionally, because it
is easier to access structured paradata, colleagues can complete their own ad hoc analysis or use
predefined programs to run reports. The section below includes examples of how colleagues use paradata
to evaluate survey questionnaires and dynamically manage data collection.

4.1 Survey Project Managers—Dynamic Management of Surveys
An important responsibility for survey project managers is to continually monitor and manage data
collection, for example, by adapting to the amount of interviewer resources available. Having daily
updated paradata and sample information can be very beneficial for survey managers. As we have had
several survey project managers involved in the development of the pipeline, they have effectively started
analyzing paradata and developing reports for the web page.

We have used Dial History data to create key metrics that are used to monitor the data collection process.
Dial History data contains information about the most important indicators used to supervise the data
collection, such as the number of interviews conducted, response rate among respondents who have been
contacted at least once, the number of dropouts, and the average interview time. The average interview
time is often estimated during testing, but because it may vary from the actual interview time, it is
beneficial to check the average interview time early in the data collection process. Since interviewers
inform respondents about the estimated duration of the interview when asking them to participate in the
survey, it is important that the estimated interview time is close to the actual interview time.

We used paradata in the Living Conditions Survey 2023 to assess nonresponse bias during the data
collection period, which helped us initiate measures to try to reduce that bias. When comparing the
distribution in the gross sample with the distribution in the net sample, we can say something about
nonresponse bias. By using paradata, combined with grouped sample data for gender, age, and education
level, we made a visualization showing nonresponse bias for these characteristics. People aged 25 to 44

> back to Table of Contents

9

and people with lower education levels were underrepresented in the net sample. We therefore decided to
offer incentives for people from these two groups to increase response rates. Without paradata combined
with grouped sample data being updated on the web page daily, we would not have been able to monitor
the nonresponse bias continually and initiate the exact measures we did, in addition to measuring the
effect in retrospect.

In the same survey, we decided to reduce the maximum number of possible calls to respondents because
we saw from paradata that the last calls yielded very few interviews compared with the large share of
nonresponses. Paradata enabled us to demonstrate the result of each call in an accessible manner, and we
could adjust the daybatch settings accordingly. Explicitly, we reduced the maximum number of calls from
15 to 12 in the Blaise CATI dashboard as the 13th, 14th and 15th call proved to be unfruitful in yielding
interviews. This insight was particularly important, as we had limited interviewer resources that
demanded efficient time allocation.

4.2 Survey Project Managers—Evaluating Survey Questionnaires
We have also used paradata to understand the flow of the Travel and Shopping Survey. Norwegians’
travel and shopping habits abroad were previously included as a minor part of a larger questionnaire
conducted through telephone interviews. Later, the survey transitioned to a dedicated web-based platform,
resulting in significant restructuring and rephrasing of questions. In connection with this, we used the
paradata foundation to test a hypothesis about underreporting.

The mode shift and restructuring of questions led to the hypothesis of underreporting for the number of
trips taken abroad, as the survey’s burden on respondents increases in line with the number of trips.
Respondents are first asked how many trips abroad they have taken in the last month, and then they are
asked follow-up questions for each trip. The questions are often identical and repeated for each trip.
Response burden is often associated with long completion time, poorly formulated questions, and nearly
identical repetitive questions (Sharp & Frankel, 1983). Considering this, it is conceivable that respondents
may understand the logic of the Blaise questionnaire and reduce the reported number of trips to avoid
survey burden and the number of repetitive questions.

In summary, we utilized paradata to test the hypothesis of underreporting by examining respondents’
navigation and user journey through the questionnaire. After unpacking, rows were grouped by
respondents and timestamp and were ranked in chronological order. By doing so, it became possible to
track the user journey of respondents during questionnaire completion. However, due to the volume of
information, it was crucial to find a visualization method that would present the user journey of all
respondents in a straightforward manner.

Considering the hypothesis, we used a Sankey diagram, as it provides a clear visual representation of the
transition between survey questions, revealing bottlenecks where the respondent either drops off, stalls, or
goes back to a previous question. Lastly, if the user journey has multiple paths or options, the Sankey
diagram can demonstrate how these paths diverge and converge.

Figure 3 shows a visualization of all recorded user journeys through the survey. As seen in the figure,
many respondents move from the introduction to the transport questions, but upon closer examination of
the diagram, it is evident that the introduction repeats later in the journey. This provided us with an
indication that respondents navigate backward in the questionnaire. After closer inspection, we observed
that respondents with more trips often adjusted the reported number of trips to avoid repetitive questions
about each trip. This led to adjustments in survey questions and the introduction of a cap on the number of
trips the respondent must report.

> back to Table of Contents

10

Figure 3. Survey Flow in the Travel and Shopping Survey—Sankey Diagram

Paradata proves to be well suited for analyses aimed at gaining insight into the user journey or flow of
respondents in a questionnaire. Often, such an analysis can serve as an initial exploration to identify
potential weaknesses in the questionnaire. Furthermore, such visualization provides a focus on where to
allocate time and effort for both further analysis of reported data and coding of the Blaise questionnaire
itself.

4.3 Survey Methodologists—Recruitment and Questionnaire Monitoring
To design new questionnaires or improve existing questionnaires, it is important for survey
methodologists to assess how well the questions and questionnaire flow work for respondents to assure
high data quality. Various qualitative methods, such as expert reviews, explorative and cognitive testing,
and focus groups, are used to assess problems with the questions and improve them. Problems with the
questions might lead to a large respondent burden, for example, due to sensitive questions, confusing
question formulations, or no suitable answer options, which can lead to inadequate data quality.
Quantitative data, such as paradata, can help to determine if problems detected in qualitative testing
persist in the data collection. Similarly, paradata, combined with sample data, can give useful insights into
whether a problem occurs for a specific group in the population.

Paradata have been available in Statistics Norway for a while, but with higher accessibility through the
pipeline, survey methodologists can more easily use paradata. Paradata can be used for pilot surveys and
user testing during the data collection process and after the data collection process is completed.
Especially for pilot surveys, the use of paradata during the data collection process can be handy for
recruiting specific people to focus groups. For instance, we can recruit those who took a long time to
answer the survey, those who are registered with several sessions, or those who received several error
messages when answering the questionnaire.

For evaluating the quality of questions or questionnaire flow of a survey, various paradata indicators can
be used. It is important to keep in mind that analyzing paradata is time-consuming, and it is therefore
advisable to map out the questions we want to analyze using paradata and choose which paradata
indicators should be used for the analysis. For instance, indicators we often use to assess respondent
burden and data quality are:

• Error messages
• Response time
• Previous page

> back to Table of Contents

11

Error messages can help the respondent avoid obvious mistakes or unanswered questions. Yet, it can be
problematic if the error message is not comprehensible to the respondent or if the respondent receives
many error messages while answering the survey. If many respondents receive error messages, this can
lead to dropout or irritation and might affect the responses for the remaining questions. It may also be an
indication of a poorly formulated question.

Analyzing response time has been studied extensively and a review of existing literature has been done by
Vehovar and Čehovin (2023). A very short response time can indicate that a respondent does not read the
question formulation thoroughly or not at all. On the other hand, a very short completion time could also
mean that the respondent is just a particularly quick reader. A very long response time might indicate that
the question is difficult to understand or answer. What determines if a response time is too long or too
short depends on the type of question. Hence, researchers have to consider the question at hand to
determine if a response time is too short or too long.

If many respondents revisit the previous page, it might indicate that there is a problem with the
questionnaire flow, for instance, if there is a follow-up question on a new page but respondents require
repetition of important information and must revisit the previous page. It might also indicate that the
respondents perceive questions as too similar and therefore go backward in the questionnaire to find the
difference between the questions.

In sum, paradata can help us to assess data quality and reduce response burden. Although paradata cannot
replace qualitative work such as user testing, paradata serve as an additional help for survey
methodologists to improve survey questionnaires.

5. Summary
In this article, we have outlined the process of exporting, cleaning, storing, and sharing paradata in our
pipeline. The primary objectives for the team responsible for utilizing paradata was to continually provide
stakeholders with up-to-date reports of the data collection and to make paradata more easily accessible for
colleagues. We achieved these objectives by building this data pipeline. Within the pipeline, we have
focused on code modularization and building program reports that can be run on several surveys. In
addition to using program reports, colleagues can conduct their own analyses and develop program
reports tailored to their specific needs. Our data collection department is composed of colleagues with
varying levels of programming proficiency, and everyone has a critical role in data collection procedures.
To ensure that everyone has the opportunity to view the outcomes of data collection and participate in
enhancing its efficiency, irrespective of their programming proficiency, we share an overview of the data
collection process on an internal web page. The examples of how our survey project managers and survey
methodologists use paradata highlight the foundational role of our pipeline in shaping a range of crucial
decisions. The pipeline facilities effective use of paradata to inform decisions about data collection
processes and survey questionnaire development, thereby enhancing several aspects of the data collection.

6. The Way Forward
Since our pipeline project is in its early stages, we wish to improve certain aspects. Firstly, we wish to
include more reports on our web page and build more supporting modules and programs for ad hoc
analyses. To understand the needs of our colleagues and update them on our progress, we have regular
sprint reviews where we show program reports we have developed and new additions to the webpage.
These sprint reviews are opportunities for colleagues to suggest improvements and solutions that can help
support them in their roles. Secondly, the steps in our pipeline are mostly automated, except for updating
the web page. Thus, one of our priorities is to develop a solution that will automatically update our web
page. Furthermore, we wish to create a dashboard that will give the user more flexibility with
interactivity.

> back to Table of Contents

12

Our pipeline is a work in progress, and we expect to update and improve aspects of the pipeline as we
discover bugs or find improvements. Thus, we suggest that interested readers contact us to see the
updated versions of the code shown in this article.

7. References
Cheung, G., Piskorowski, A., Wood, L., & Peng, H. (2016). Using survey paradata. 17th International
Blaise Users Group Conference, The Hague, Amsterdam, the Netherlands.

Hunt, J. (2016). Using Audit Trail data to move from a black box to a transparent data collection process.
17th International Blaise Users Group Conference, The Hague, Amsterdam, the Netherlands.

Kreuter, F., Couper, M., & Lyberg, L. (2010). The use of paradata to monitor and manage survey data
collection. American Statistical Association, Proceedings of the oint statistical meetings, (pp. 282–296).
Alexandria, VA, United States.

Schouten, B., Peytchev, A., & Wagner, J. (2017). Adaptive survey design (1st ed.). Chapman and
Hall/CRC.

Sharp, L. M., & Frankel, J. (1983). Respondent burden: A test of some common assumptions. Public
Opinion Quarterly, 47(1), 36–53.

Vehovar, V., & Čehovin, G. (2023). Direct paradata usage for analysis of response quality, respondent
characteristics, and survey estimates: State-of-the-art review and typology of paradata (Working Paper).
Center for Social Informatics, University of Ljubljana. https://www.fdv.uni-lj.si/docs/default-source/cdi-
doc/direct-paradata-usage-for-analysis-of-response-quality.pdf?sfvrsn=0%20

> back to Table of Contents

13

8. Appendix
Code 1. Exporting Audit Trail Data from Blaise

> back to Table of Contents

14

Code 2. Exporting and Preparing Dial History Data from Blaise

> back to Table of Contents

15

Code 3. Parsing Paradata and Storing the Structured Paradata in a Parquet File

Code 4. Manipulating Paradata for Analysis

> back to Table of Contents

16

Code 5. Module to Query Data from the Production Bucket

def file_concat(InstrumentId, dager=None, start_dato=None, slutt_dato=None):
 # Importerer nødvendige pakker
 import dapla
 import sys
 from dapla import FileClient
 import pandas as pd
 import os
 import pyarrow.parquet as pq
 import warnings
 warnings.filterwarnings('ignore')
 # Får tilgang til bøtte strukturen
 fs = FileClient.get_gcs_file_system()
 alle_filer_i_bøtta = fs.glob('gs://ssb-prod-datafangst-person-data-produkt/Inndata/ringedata'+
"/*.parquet")
 # LAger tester foir ulike parametre
 alle_dager = ((dager is None) &(start_dato is None) &(slutt_dato is None))
 antall_dager = ((dager is not None)&(start_dato is None)&(slutt_dato is None))
 fra_dato = ((dager is None)&(start_dato is not None)&(slutt_dato is None))
 til_dato = ((dager is None)&(start_dato is None)&(slutt_dato is not None))
 intervall = ((dager is None)&(start_dato is not None)&(slutt_dato is not None))
 alle_filer_i_bøtta = FileClient().ls('ssb-prod-datafangst-person-data-produkt/Inndata/ringedata')
 # Sjekker indexen for ønsket datoer i alle filers liste
 start = ''
 if start_dato is not None:
 for index, element in enumerate(alle_filer_i_bøtta):
 if start_dato in element:
 start = index
 if start == '':
 sys.exit(0)

 elif start_dato is None:
 pass
 else:
 raise UnboundLocalError(f'{start_dato} finnes ikke i bøtta')
 slutt = ''
 if slutt_dato is not None:
 for index, element in enumerate(alle_filer_i_bøtta):
 if slutt_dato in element:
 slutt = index
 if slutt == '':
 sys.exit(0)
 elif slutt_dato is None:
 pass
 else:
 raise UnboundLocalError('Denne datoene finnes ikke i bøtta')

 #Velger filer i som ønsket antall dager
 if alle_dager:
 files = alle_filer_i_bøtta[1:]
 elif antall_dager:
 files = alle_filer_i_bøtta[-dager:]
 elif fra_dato and start != '':
 files = alle_filer_i_bøtta[start:]
 elif til_dato:
 files = alle_filer_i_bøtta[1:slutt+1]
 elif intervall and start!='':
 files = alle_filer_i_bøtta[start:slutt+1]
 # Lager en beholder for ønskede fielr
 out = []
 # Looper gjennom alle ønskede filer
 for file in files:
 file = 'gs://' + file
 out.append(file)
 table_df = pq.ParquetDataset(out, filesystem=fs, filters=[("InstrumentId", "==",
InstrumentId)]).read().to_pandas()
 return table_df

> back to Table of Contents

1

Integrating Blaise 5 and DDI Lifecycle 3.3
Dan Smith, Jeremy Iverson, Colectica

1. Abstract

This paper is pleased to introduce a new Blaise 5 to Data Documentation Initiative (DDI) Lifecycle
conversion tool. DDI Lifecycle is an open metadata standard that is used for describing survey
specifications and the resulting datasets, along with study, process, and linage information. Colectica
Designer has supported a Blaise 4 and Blaise 5 to DDI Lifecycle converter for many years, utilizing a
custom-built grammar for the Blaise language. While this has worked well for converting the major
structures of a Blaise survey into DDI Lifecycle, not all aspects of the Blaise language were supported.
External language definitions within Blaise .bitt files were not processed, as only the Blaise source code
was processed and the translations are added later in the .bmix build process. Another issue was keeping
the grammar updated with the new language features that are being added into each new Blaise 5 release.

To improve the story for Blaise and DDI Lifecycle integration, Statistics Netherlands and Colectica
partnered to jointly develop several DDI tools for the Blaise ecosystem. The first tool developed was the
Blaise Colectica Questionnaires tool, which is used to specify a survey specification in DDI Lifecycle and
generate corresponding Blaise code. This paper introduces a second tool, a Blaise 5 to DDI Lifecycle 3.3
converter. The Blaise Colectica DDI Connector takes the approach of using the Blaise API directly to
process compiled Blaise .bmix survey specifications and .bdix data definitions to create DDI Lifecycle
3.3.

The DDI items are uniquely identified and versioned, and the converter additionally computes hashes that
can be used to help locate identical question or answer choices previously documented within question
banks. The resultant DDI can then be exchanged or imported into any other tools that support the DDI
standard.

2. Introduction

The DDI Lifecycle metadata standard is a comprehensive metadata ontology, primarily designed for
documenting and managing survey specifications and statistical datasets. It provides a structured
framework for describing the entire data lifecycle, from data collection and processing to preservation and
dissemination. The standardization provides a common language and structure for describing data,
making it easier for researchers, data producers, and data archives to communicate and understand the
content and context of survey data.

2.1 History of DDI

The DDI initiative began in the late 1990s as a collaborative effort among data archives, libraries, and
research organizations to develop a standardized way of documenting and managing social science and
survey data. The original version of the standard was called DDI Codebook (DDI 2) and focused on
single data files. DDI Codebook made no distinction between a variable description and a question
description. This version of DDI also lacked unique identifiers for the various metadata being
documented, which hampered efforts to reuse, link, and share metadata information across multiple
datasets, studies, and organizations.

> back to Table of Contents

2

Colectica and Statistics Netherlands both had representatives participate in the drafting of a new version
of DDI, which became DDI Lifecycle (DDI 3). This newer version had several new capabilities including
a particular emphasis on questionnaire specification and metadata reuse:

• Questionnaire Design and Documentation: DDI Lifecycle allows researchers and survey
designers to document survey questionnaires comprehensively. This includes specifying question
wording, response options, skip patterns and routing instructions, multiple languages, and track
question and block reuse. This detailed documentation helps maintain the integrity and
consistency of surveys.

• Data Collection: Information can be tracked using DDI that describes fielding periods,
populations of the respondents, and specific versions or revisions of the fielded survey
instrument.

• Data Analysis: Researchers can use DDI to understand the structure and content of the dataset
produced by a survey instrument. This information is crucial for accurately analyzing the data,
including identifying the meaning of variables, handling missing data, and understanding the
survey’s design.

• Data Sharing and Data Discovery: DDI-compliant metadata enhance the discoverability of
survey data. Researchers and data archives can use DDI metadata to search for relevant datasets
and evaluate their fitness for research purposes. Questions, response options, and survey blocks
can be reused and linked in documentation.

• Long-Term Data Preservation: DDI helps in preserving the context and documentation of
survey data over time. This is essential for ensuring the long-term usability and integrity of social
science datasets.

2.2 DDI and Blaise Terminologies

The representatives participated in several years of design discussions to ensure that DDI Lifecycle could
document the general structure of Blaise surveys. The Blaise rules, blocks, fields, groups, rosters, and
computations all correspond to elements of the DDI Lifecycle ontology.

• Rules: Rules in the Blaise survey system are akin to DDI’s Question Flow and Logic elements.
They specify conditional actions or skip patterns that control the flow of questions or the survey
path, based on respondent inputs. These correspond to DDI’s control constructs, which are nested
components that describe when questions are asked and how the survey progresses.

• Blocks: In Blaise, blocks are groups of related questions and rules within a survey. These
correspond to DDI’s sequence control constructs. Sequences captures the structure and
organization of questions and content within a survey specification, which is similar to how
blocks function in Blaise.

• Fields: Fields in the Blaise survey system are equivalent to DDI’s Question and Measurement
items. They represent individual data elements or questions in the survey. DDI Questions is
concerned with documenting variables in terms of their type, labels, question text, response
options, and other metadata, which maps to how fields, their types, and role texts are defined and
documented in Blaise.

• Groups: Blaise groups allow you to organize related questions or fields within a survey into
special composite displays. This corresponds to DDI’s concept of a Question Grid or Question
Block.

• Rosters: Rosters in Blaise are used to create dynamic repeating sets of questions, such as
household members or survey responses, to a list of items. DDI’s Question Grids contain roster
dimensions, and the DDI Looping concepts of Loop, RepeatWhile, and RepeatUntil are similar in

> back to Table of Contents

3

that they capture how certain questions or data elements are repeated for multiple items or cases
within a survey.

• Computations: Blaise allows you to define in the rules section computations or derived variables
based on responses to other questions or data and store this information into fields. DDI includes
a concept of computations that documents how new data values are computed from existing ones
during a survey. This corresponds to how computations are used in Blaise to generate new data
based on respondent inputs.

A complete detailed mapping of the Blaise metadata fields to DDI items and properties can be found
within the tool distribution.

3. Blaise to DDI Converter

3.1 Components

The Blaise to DDI Converter is a tool that reads compiled Blaise .bmix and .bdix files to generate DDI
Lifecycle descriptions of the survey specification and resulting raw dataset. The Blaise .NET API and the
Colectica SDK are used together to convert the compiled Blaise metadata structures into DDI Lifecycle
metadata.

• Blaise .NET API: The Blaise .NET API is a set of libraries distributed as a NuGet package to
allow developers to interact with Blaise survey projects programmatically. It provides methods
for reading and manipulating Blaise survey instruments and their associated metadata.

• Colectica SDK: The Colectica SDK is a software development kit for working with the DDI
Lifecycle model. It includes libraries and tools for creating, reading, and exporting metadata in
various DDI formats, as well as creating integration Addins for other Colectica tools.

Users of the Blaise to DDI Converter can use either the command line interface to create batch processes
or use the GUI user interface. A .bmix file will be chosen to load, and the resulting DDI Lifecycle
metadata can be written to a .xml file or saved directly to a Colectica repository. All described metadata
content that is generated, including questions and type definitions, will be given globally unique
identifiers to allow storage in question banks or type libraries.

> back to Table of Contents

4

3.2 Reuse with Question Banks and Type Libraries

It is useful to find all instances of identical Blaise fields and types, DDI questions, and codelists that
appear across many different Blaise survey instruments during the conversion process. This allows
reusing the unique identifiers assigned to metadata items and producing documentation and web portals
showing question reuse.

During each conversion of a .bmix to a DDI Lifecycle description of a survey, new identifiers are
generated for each metadata item. To allow finding reused questions and types, the Blaise to DDI
Converter creates unique hashes of the content of the items. Creating a unique hash of the contents of
question text and response options is a useful technique for identifying and finding duplicates that may
already be stored in a repository. These hashes serve as fingerprints for the field or type and can be used
to compare and match questions efficiently.

DDI Lifecycle and Blaise are multilingual; the normalization process for each piece of text involves
sorting the metadata by language tag and creating a string in the format of {language-
tag}:{text}:{languagetag}:{text}: and so forth. A similar normalization is done for type codes and
multilingual value labels. Text fields of the questions and codelists are concatenated to create a
normalized concatenated string. A SHA-256 hash is created from the normalized string and stored as an
additional identifier within each metadata item. This hash can now be used as a reference for finding and
identifying duplicate questions efficiently.

During the conversion process, the Blaise to DDI Converter can optionally cross-reference the computed
SHA-256 hashes in a Colectica repository to see if the question or codelist with identical content has
already been created. The converter employs the computed hash and does a search of the repository. If a
match is found, the converter can utilize the pre-existing metadata item and its corresponding identifier
instead of generating a new duplicate and redundant metadata item. This allows for deduplication during
the conversion process instead of as a post-processing step. Using this approach, you can quickly identify
duplicate questions and response types without the need for a more resource-intensive textual or semantic
comparison.

While this process of using hashes of metadata fields finds exact matches, DDI is also capable of relating
similar questions. A question can be associated with a concept. Similar questions can be related by linking
to the same concept. Conceptual linking of questions can be addressed as a step after the Blaise to DDI
conversion, done by this tool.

4. Summary/Reflections

The introduction of the new Blaise to DDI Converter represents a significant advancement in terms of
sustainability and efficiency compared to the previous Colectica Designer source code parser. The new
converter leverages the official Blaise API, marking a fundamental shift from the previous approach. This
integration with the official API allows the tool to directly access and interact with Blaise .bmix survey
projects and their metadata without having to parse Blaise source files. This is a pivotal enhancement
because it means the converter is now closely aligned with the Blaise survey platform itself, allowing the
utility to easily keep pace with any changes introduced to the Blaise language.

One of the primary advantages of utilizing the official Blaise API is the new converter’s ability to adapt to
changes in the Blaise language. As Blaise evolves and introduces new features or modifications, the
converter can readily accommodate these changes. This adaptability ensures that the tool remains

> back to Table of Contents

5

compatible with the latest versions of Blaise 5, minimizing the risk of compatibility issues or data parsing
errors that may have occurred with the previous Colectica source code parser.

The development of the new converter is a collaborative initiative between CBS (Central Bureau of
Statistics) and Colectica. This partnership not only demonstrates a commitment to the ongoing
improvement of the tool, but also enhances its stability. The combined expertise and resources of both
organizations contribute to the tool’s robustness and reliability, and will lead to continuous updates,
maintenance, and support for the converter.

DDI Lifecycle places a strong emphasis on reusable metadata descriptions, change tracking, documenting
lineage, and unique identification. Whether comparing different draft versions of a survey during the
developmental stage or linking different questions across a multitude of surveys and projects, DDI offers
a production-ready framework for storing and establishing relationships among this information. When
applying this to Blaise fields and response types, many new opportunities for reporting and visualizations
can be imagined. While starting with exact matching for linking questions across surveys is a solid
foundation, it will be interesting to see what other types of question comparison the community could find
useful to be included within the tool during the DDI conversion process.

In summary, the new Blaise to DDI Converter is a sustainable solution that benefits from its integration
with the official Blaise API, adaptability to changes in the Blaise language, and the collaborative effort
between CBS and Colectica. These factors combine to ensure that the converter will be a dependable and
up-to-date tool for converting Blaise survey projects into DDI Lifecycle-compliant metadata.

> back to Table of Contents

1

Automation Testing Experience with Blaise
Kay Brenner, Gayu Subramanian and Rittu Jittu, Westat

Presenter: Mangal Subramanian

1. Abstract
Automation testing provides many benefits to projects that include time and cost savings, efficiency with
regression testing, and consistency across test runs. It also provides better scalability and analysis reports
on test coverage. We review our experiences using various automation solutions with Blaise 4.8 and 5,
show several demonstrations of these products, and discuss the advantages and disadvantages of the
different approaches investigated.

2. Introduction
This past year, we reviewed various automation solutions with Blaise 4.8 and 5, including Selenium,
Winium, and Ranorex, and looked at the innovations coming out of Statistics Netherlands this year. Each
of the products is discussed below.

2.1 Selenium
It is clear from Selenium’s tagline that it is a testing tool for automating web application testing. When it
comes to web automation testing tools, Selenium is one of the best. It is an outstanding open-source
automation testing tool that can be executed in multiple browsers and operating systems, supporting a
considerable amount of programming languages. It is the base for most of the other software testing tools.
We are using Selenium WebDriver for automating websites and web surveys. Our Selenium script checks
text validations (comparing actual text with expected text), image validations, buttons enabled, web
elements displayed, hyperlinks, colors, and bolding of text.

Figure 1. Selenium Automates Browsers

> back to Table of Contents

2

2.2 Winium
When it comes to testing and automating desktop applications on Windows, Winium is the ideal option.
Winium—built on Selenium—is an open-source automation framework used for interacting with
Windows applications. This framework can automate any desktop application developed on Windows
Presentation Foundation or on Winforms.

Figure 2. Winium

Winium works very well for automating both CAPI and ACASI Blaise surveys. We have created
automation scripts for surveys in Blaise 5.13. These scripts run in under five minutes, testing the same
task that manually could take 1–2 days to test. Our script checks text validations, image validations,
routing, skips, and e-signature entry.

Figure 3 shows the test automation framework.

Figure 3. Test Automation Framework

Java is the programming language used to write the test scripts. We use the TestNG Framework for
managing test cases and generating detailed test reports, and we store the project in GitLab for version
control. We also use a number of integration tools, for example:

> back to Table of Contents

3

• Sikuli: validates images, such as show cards
• Apache POI: reads data from Excel files, like preloads values
• Opencsv: reads data from CSV files (data files)
• Apache PDFBox: validates PDF text, such as consent forms

2.3 Ranorex
Ranorex Studio is a very powerful tool to automate tests for web, desktop, and mobile applications. It is
less programming intensive, with a record/playback structure, so even noncoders can begin to create tests.
It supports all technologies (.Net, Java, Flex, HTML) and works in different browsers (IE, Chrome,
Firefox) and mobile applications (Android, iOS).

Figure 4. Ranorex

We use Ranorex to test the same validations as Selenium and Winium (text, image, routing validations,
etc.) but in ACASI.

Figure 5. Pros and Cons of Different Blaise Automation Solutions

Comparing our three automation solutions, Selenium gave us the least resistance to identifying Blaise
objects when dedicating a Java-experienced test resource, but it’s a web-only tool, so let’s look at other
considerations.

> back to Table of Contents

4

2.3.1 Cost
The open-source tools make it hard to justify the cost of a purchased testing automation tool and measure
return on investment if you have short-term goals.

2.3.2 Time
Automated testing is essentially writing code to test other code. Added to the cost is the time spent setting
up and maintaining the framework. Sometimes it will result in having to spend more time writing code
than actually testing. Having a stable system is imperative; otherwise, resources constantly spend time
maintaining test scripts instead of testing. The time payback comes with running automated scripts on a
long-term regression system when tests can run in minutes instead of days. Now multiply that by the
ability to run tests overnight while your manual testers are sleeping, and you can really reap the benefits
of automation.

2.3.3 Skill
A good automation tester needs either basic programming skills and experience or time and aptitude for
online learning. Even “record and playback” tools require script adjustments, and scripts need
maintenance if something changes in the system under test.

2.4 Future Generation of Blaise Automation
Statistics Netherlands programmers are working on an automation solution that could replace, or at least
enhance, our current automation tool(s). The Test Records Generation (TRG) provides a record of test
cases that will account for navigating each questionnaire statement at least once. The TRG test record
values can then be used to get the minimum number of test cases that exercise all statements without
having to run every, or even duplicate, routing tests. A test log file will contain errors found while
implementing the test records in a Blaise engine, including missing expected values and other test record
values. Blaise 5.14 will introduce a separate test tool that offers TRG, and other solutions are upcoming.

2.5 Summary
We found a combination of tools suited our needs and settled on Selenium for websites and web surveys
and Ranorex for Blaise 4.8 and 5.13 CAPI and ACASI surveys. The biggest payback on automation
resources comes when you have scripts that can run overnight on a stable system. We use a premium
Ranorex license for creating and maintaining test scripts and runtime licenses for running the test scripts.

When working on a stable system, testers and management will see benefits from automation testing over
manual testing in these expected ways:

2.5.1 Fast and Efficient Testing
Automation testing runs tests much faster and more efficiently than manual testing. A large number of
tests running in a shorter amount of time allows for faster detection of issues.

2.5.2 Consistent and Reliable
Automation testing eliminates human error and executes the same tests every time, improving the
accuracy and consistency of the test results.

> back to Table of Contents

5

2.5.3 Cost-Effective
Although there is an initial investment in developing automated test scripts, if you have a stable system, it
is more cost-effective in the long run than manual testing. The repetition of running automated tests
without additional costs ensures the cost per test decreases over time.

2.5.4 Better Regression Testing
Automation testing can quickly identify regression issues and detect whether new changes have affected
existing functionalities, thus reducing the risk of introducing new bugs or issues.

2.5.5 Increased Test Coverage
Manual testing puts limits on how many tests you can verify. Automation allows you to spend time
writing new tests and adding them to your automated test suite. This increases the test coverage and
reduces the risk of defects.

2.5.6 Scalable
Project requirements can determine the number of users, modules under test, executions, and test cases,
making it an ideal solution for projects with stable systems.

> back to Table of Contents

1

Experiences in Accessibility and 508-Compliance Testing at RTI
Al-Nisa Berry, Emily Caron, Melissa Page, and Rhymney Weidner, RTI International

1. Abstract

As surveys become increasingly web-based, and the federal government—as well as other clients—
frequently require accessibility standards to be met, it grows ever more important for developers to have
flexibility and relative ease in applying accessibility-related attributes to survey controls. Blaise 5
includes many new features to help foster the development of an accessible survey; however, there
remains room for improvement. This paper will cover some of the discrepancies between RTI’s testing
with ANDI (Accessible Name & Description Inspector) and what passed for the NVDA (NonVisual
Desktop Access) screen reader. It will also describe the overall challenges we faced, along with some
solutions applied while developing a 508-compliant web survey in Blaise 5.

2. Introduction

While we have used Blaise 5 successfully on many projects, in fall 2022, we endeavored to use it on our
first project with the goal of being completely 508 compliant. Blaise 5.12.8 was the latest production
version of Blaise 5 available when we began serious development, and so it was the version selected for
use on this project. The survey in question was to be completed in CAWI and CATI mode. CAWI mode
was designed with two sets of layout templates, one “large” for browsers with a width greater than 600 px
and one “small” for browsers with a width less than 600 px. CATI mode would also be completed in a
web browser, with slight adjustments to the layout and text compared to what was used for the CAWI
“large” version. 508-compliance testing was conducted only on the CAWI “large” layout set and
evaluated using the Chrome browser. 508 guidelines require the survey to follow all WCAG 2.0 rules to
be compliant.

The 508-compliance testing team at RTI International, which is comprised of RTI QA staff, utilized the
accessibility testing tool created by the Accessible Solutions Branch of the Social Security Administration
called “ANDI.” This tool is a Javascript-based tool that is easily installed in a variety of browsers,
including Chrome, Edge, Firefox, Safari, and Internet Explorer.

While we encountered many issues during our journey to 508 compliance, this paper will cover
representative issues from each of these areas: compliance issues that could not be solved, issues where
we found workarounds to achieve compliance, and issues where we communicated with the Blaise 5
development team for potential solutions.

3. Testing Results

At every stage, the 508-compliance testing team provided testing results in easy-to-read Excel and Word
documents. The Excel document listed each WCAG 2.0 requirement and the results for that item in the
tested survey. Any issues discovered were listed in more detail in a separate Word document that
provided a detailed description of the issue, along with screenshots. The screenshots provided specific
screens for testing potential fixes, as well as making it clear what features in ANDI were used to identify
the problem.

> back to Table of Contents

2

Figure 3a. An Example of Results Provided in Excel after Completing 508-Compliance Testing

Figure 3b. An Example of a More Detailed Issue Description, Which Was Provided in a Separate Word Document; The
Word Document Detailed Results Also Provide Screenshots to Help Isolate Fields/Screens Where the Problem Was
Located

4. Initial Layout Testing

Before development began on the full instrument, we developed a small test instrument in Blaise 5.12.7
that contained one of each question type expected in the real survey. Early testing revealed issues in our
test project. Some were issues that could be easily corrected. For example, error messages must be
descriptive and specifically state what needs to be entered to correct the issue. This could be solved by
implementing a role specifically for error text and making sure it was utilized where necessary. One
caveat with this correction, however, is that additional role texts will require translation for surveys
conducted in more than one language.

A few issues were quickly determined to be bugs and were corrected by Team Blaise in the next build of
Blaise 5 (Blaise 5.12.8). Other issues were not so easy to solve, and some we were unable to resolve.
Examples of these issues are demonstrated in the figures below.

> back to Table of Contents

3

Figure 4a. Programmatic Labels Were Not Accurate; For Example, Radio Buttons Were Labeled as “Undefined of 0”
Instead of a Name That Described the Option That Would Be Selected by That Radio Button

Figure 4b. Text on the Page Is Denoted as a Link, but It Is Not Visible; The Element Is a Hidden Error Message

Unfortunately, we were unable to find a way to fix item #1 (Figure 4a) in Blaise 5.12.8.

Oddly enough, we were able to fix item #2 (Figure 4b) by turning off some of the built-in Blaise 5
accessibility settings. By unchecking the “Use Skip Links” option under “Accessibility Options” on the
“Data Entry” tab under “Settings,” this 508-compliance failing was corrected.

5. Full Instrument Testing

Similar documents were produced for 508-compliance testing on the full instrument. Due to time
constraints, the 508-compliance testing occurred as soon as the error messages and screen layouts were
finished.

Testing on the full instrument revealed issues similar to those discovered during testing of the smaller
instrument, as well as additional problems. While developing the test project, we had not known our final
instrument would contain some large tables. These large tables presented multiple 508-compliance issues,
but it was determined that the benefits of using the table outweighed the disadvantages of not being able
to achieve full 508 compliance on these screens. The decision was made to keep the tables.

> back to Table of Contents

4

Issues that were already discovered during initial testing continued to cause problems in the full
instrument. While design changes were considered to remedy these issues, in the end, it was determined
that remediation was the better option. Rather than risk compromising the interview experience for the
majority, we decided the option to complete the survey via CATI mode provided a suitable alternative for
any users experiencing accessibility issues.

6. Compliance Issues That Could Not Be Solved

6.1 Enumerated Fields—Checked/Unchecked Responses

One of the first issues encountered involved all enumerated fields, which were quite numerous in the
survey. WCAG 2.0 Success Criterion (SC) 1.3.1 requires programmatic labels that are meaningful and
accurate. Unfortunately, for Blaise 5, we were unable to find a way to mark this information in a way that
ANDI would recognize. In this case, the NVDA screen reader would read the correct responses,
regardless of this ANDI-detected issue.

Figure 6a. Blaise 5 Correctly Indicates “Checked” for the Selected Response but Does Not Indicate “Unchecked” (aria-
checked: false) for the Unselected Response and Does Not Include the Correct Number of Response Options

> back to Table of Contents

5

Figure 6b. Blaise 5 Does Not Indicate “Unchecked” for Responses That Are Not Selected

Figure 6c. An Example of a Radio Button Set That Correctly Indicates Checked/Unchecked and the Number of Response
Options Available for a Selected Response

Figure 6d. An Example of a Radio Button Set That Correctly Indicates Checked/Unchecked and the Number of
Response Options Available for an Unselected Response

> back to Table of Contents

6

6.2 Focus Order Reveal—Cursor Does Not Move to Special Answer Response Options

SC 2.0–2.4.3 of WCAG requires the focus to automatically move to additional content that is revealed. In
this particular survey, “Don’t Know” and “Prefer Not to Answer” (DK/RF) special answer options are not
initially visible. These options appear at the bottom of the valid options list only if the respondent
attempts to leave the page without providing a valid response. Unfortunately, Blaise 5 does not allow for
adjustments to the focus order and refreshes the page when special answers are displayed using the “Hide
Special Answers the first time a respondent enters a page” option, which then sends the focus back to the
first response option on the page (not the newly displayed DK/RF).

As a potential workaround to this issue, we considered relocating the DK/RF options to the top of the
page so that the focus would automatically shift to these options when they were displayed. However, it
was determined by our survey methodologist that this positioning may be potentially detrimental to
survey results, and that—along with client preference—informed the decision to keep the DK/RF options
at the bottom of the page.

Figure 6e. Displaying the DK/RF Options after the Other Response Options Caused Issues with the Focus Order Reveal
Requirement, but Blaise 5 Did Not Provide Options for Adjusting the Focus Order

6.3 Reading Order of the Content

Dropdown fields also had their own set of problems. SC 1.3.1 of WCAG 2.0 requires that the reading
order of the content (in context) is correct. The meaning of the content should be preserved without CSS
positioning. On dropdown fields, selected responses were lost when the “Linearize Page” option in ANDI
was used. This option removes CSS positioning from the elements on the page.

While Blaise 5 does have an option to “Optimize for readability without stylesheets” that may have
helped with this issue, we were unable to utilize it. Whenever we turned this option on, it caused text
formatting issues for the response options (see Figure 6f below for an example), changing the text on the
response options to 12pt font when they really should have matched the question text at 20pt font.

> back to Table of Contents

7

Figure 6f. Turning on the “Optimize for Readability without Stylesheets” Caused the Response Option Text to Become
Tiny (the Response Options Text Size Should Match the Size of the Question Text)

Figure 6g. The Selected Response Option Is Visible Prior to Utilizing the “Linearize Page” Option in ANDI

Figure 6h. When the “Linearize Page” Option Is Turned on, the Selected Response and Associated Label Disappear
from the Screen

6.4 Part Language Defined

The overall page language is defined by Blaise 5, but we were unable to set the language on individual
parts of a page. For example, the language selector was displayed in the opposite language than the one
used on the page and, as such, should have been defined separately from the rest of the page. This
definition is a requirement in SC 3.1.2 of WCAG 2.0.

Figure 6i. The Page Is Defined in English (en) and There Are No Additional Language Tags Defined (Shown Here as “0
lang attributes”), but There Should Be One Defined for the “Cambiar a español” Button

> back to Table of Contents

8

The Blaise 5 Help suggested naming individual parts on a page by setting the language tag for rich text
elements. For example, placing text between these starting and ending tags, <lang value=”fr”></lang>,
would specify that the enclosed text is in French. We attempted to implement these tags for the select
language option, but Blaise 5’s <lang> tags are not recognized by ANDI. Regardless of the lack of
recognition by ANDI, we left the <lang> tags in the final survey in case they are recognized by some
accessibility software.

6.5 Font Enhancements and HTML Links

In traditional HTML, and <emphasis> tags should be used to bold or italicize text in a way that
promotes accessibility. Blaise 5, on the other hand, utilizes its own set of tags to denote bold or italicized
text. Unfortunately, the Blaise 5 method of bolding text is recognized as a “heading” by ANDI, which
causes issues. WCAG 2.0 SC 1.3.1 specifies that every heading that can be programmatically determined
is a visual heading, and that every visual heading can be programmatically determined. We tried utilizing
/<emphasis> tags, but they were not recognized by Blaise 5 as marking text that should be
bolded/italicized.

Figure 6j. Text Bolded Using Blaise 5 Tags Is Recognized as a Heading by ANDI

A similar issue occurred with HTML links. In standard HTML, links are designated using <a href> tags,
but Blaise 5 utilizes its own <hyperlink> tag. This hyperlink tag is not recognized by ANDI as a link or
focusable element. This lack of recognition causes issues with WCAG 2.0 SC 2.4.4, which requires the
purpose of each link to be able to be determined from the link text alone or by both the link text and
programmatically determined link context.

> back to Table of Contents

9

7. Workarounds to Correct Compliance Issues

7.1 Constraint Errors

While there were many issues that we could not find a way to circumvent, we did find workarounds for
some of the accessibility issues. One of the issues discovered by our accessibility testers was that a
respondent could not move backwards after receiving a Blaise 5 constraint error. We were using
constraint errors to prevent respondents from entering invalid email addresses (as suggested by the Blaise
5 Help). To get around this issue, we developed a procedure to check email addresses. This procedure
exports an “IsValid” value that evaluates to ‘1’ when the email is valid. By utilizing a signal and this
procedure, we were able to allow the respondent to move backwards in the survey, even if they had
entered an invalid email address (they still could not move forward).

Figure 7a. The CheckEmailProcedure Evaluates the Entered Email Address to Check Its Validity and Will Return a
1 (valid) or 0 (invalid)

Figure 7b. This Signal Will Prevent the Respondent from Moving Forward If the Email Address Is Invalid, but Still Allows
the Respondent to Go Backwards in the Survey

7.2 Page Title Is Not Programmatically Identified as a Heading

Another issue identified was that the page title, which was the data model name, was not identified as a
heading. This lack of identification conflicted with the requirements of WCAG 2.0 SC 1.3.1, “Info and
Relationships” that requires information and relationships to be able to be programmatically determined.

Adding the <H1> tag to the data model name in the Blaise 5 source code would have fixed this issue, but
then it also would have been applied in both layout sets, large and small. Adding the <H1> tag overrides
any other font settings and modifying it in the Blaise source would make the data model name H1-sized
text in the small layout set, as well. To avoid making the data model name this large in the small layout
set, we adjusted the page header template part used only in the large layout set. The small layout set,
which we did not evaluate for 508 compliance, retained the small text determined to look best in the small
layout set.

> back to Table of Contents

10

Figure 7c. Adding <H1> Tags on Text for the Label to Display the Data Model Name Corrected This Issue While Allowing
the Small Layout Set to Retain the Smaller Font Size; This Change Was Made on the Template Part Used for the Header
in the Large Layout Set

7.3 Tables

Errors in tables presented another accessibility challenge. WCAG 2.0 SC 3.3.1 requires errors to be
clearly identified. Part of that requirement is that the error message reference the associated field. Blaise 5
tables initially did not fulfill this requirement, but we were able to modify the templates to display
information that would make these tables 508-compliant. This solution was not implemented in the final
production survey, however, because it was decided displaying field names (as required for accessibility
compliance) might prove confusing for most respondents.

Figure 7d. Default Templates Do Not Make a Reference to the Field Name, Either Where the Question Is Displayed or in
the Error Message When It Displays

> back to Table of Contents

11

Figure 7e. Adjusted Templates Display the Field Name with the Question Text and in the Error Message When It Is
Displayed so the Respondent Can Easily Tell Which Error Applies to Which Row in the Table

7.4 Magnification to 200%

When size (pixels, in this case) is used to determine the layout set, Blaise 5 reevaluates the layout set used
when the respondent magnifies the browser window. This feature caused us issues with WCAG 2.0 SC
1.4.4, which requires content to be able to scale up to 200% without changes to the content on screen. Our
testing team determined that in the process of scaling the content up to 200%, the page would update from
using the large layout set to the small layout set. To work around this issue, we adjusted the condition
used to determine when to switch from the small layout set to the large one. Instead of using 800 px as the
cutoff for the switch from the large layout set to the small one, we used 600 px. This cutoff point kept the
layout set used from updating when scaling up from 100% to 200%.

8. Communication with the Blaise Development Team

As always, the Blaise development team was very responsive to our accessibility questions and did their
best to help us find ways to circumvent the issues identified. Some of the issues we reported were
identified as bugs and corrected in a subsequent build, but due to time constraints for testing, we
determined it would not be worth the risk to switch major versions so close to the launch date for the
instrument. Other issues were corrected quickly enough that we could utilize the newer build prior to
production. Initially, we experienced a problem where the tab order would jump to an incorrect spot after
selecting a response from a dropdown. The Blaise development team determined this issue was a bug and
it was promptly fixed in the subsequent build, 5.12.8, which we used in production for this instrument.

A few of the issues we reported were “fixable” by turning on some of the Blaise 5 accessibility options in
the BLAX “Settings” tab, but these options caused other issues. For an issue where the error message was
not receiving focus correctly, it was suggested to turn on the “Use CSS grids instead of the size tree”
option on the settings tab of the BLAX to correct it. However, turning on this option caused the response
options to display as buttons.

> back to Table of Contents

12

Figure 8a. Turning on the “Use CSS Grids Instead of the Size Tree” Option Caused Response Options to Appear as
Buttons

Other issues were identified by ANDI as problems but worked correctly in NVDA. The issue with radio
buttons identifying as “0 of undefined” is an example of a problem that showed in ANDI but worked
correctly in NVDA. The Blaise development team said that NVDA read out (correctly) “4 of 4” for a field
with four radio buttons, while ANDI still saw it as “0 of undefined.”

9. Challenges in 508-Compliance Testing

In addition to trying to navigate the sometimes complex 508-compliance requirements, we also had to
contend with bugs found in the ANDI software while testing. One of the compliance issues discovered by
our compliance testing team was “WCAG 2.0–2.4.4 Link Purpose: The purpose of each link or button can
be determined from any combination of the link/button text.” We discovered that ANDI had a bug: it
wouldn’t detect the Blaise 5 buttons when the screen was initially loaded. Instead, it required clicking on
the “0 buttons” link on the page.

Figure 9a. Upon Initially Loading the Page Where the 508-Compliance Error Was Identified, ANDI Showed “0 buttons”;
This Link Is Identified in the Image by the Large Red Arrow

Figure 9b. After Clicking on the Previously Mentioned “0 buttons,” ANDI Correctly Identified All Blaise 5 Buttons on the
Page as Buttons

As mentioned previously, sometimes we were able to achieve better compliance by turning off certain
Blaise 5 “accessibility” features. While it seems odd that not using features specifically meant to facilitate
accessibility improved our accessibility testing “score,” we believe this apparent conflict is the result of
different methods of 508-compliance testing. In our communications with the Blaise development team
(discussed in more detail in Section 8), it was discovered that they primarily relied on testing using the
NVDA screen reader. This feature that caused issues for ANDI testing likely fulfilled some requirement

> back to Table of Contents

13

of the NVDA tool. We highlight this difference in method here to highlight the difficulty in achieving
total 508 compliance when different tools or methods are used to determine compliance.

To further emphasize this point, when the client conducted their own 508-compliance testing on the
finished survey, they found an issue not previously identified during ANDI testing. Not all WCAG 2.0
requirements can be measured using the ANDI tool, so individual tester evaluation and analysis can add
yet another layer of variability to compliance testing. 508-compliance testing results will vary as much as
the tools, methods, and testers used to conduct it.

10. Final Results and Future Plans

We were unable to achieve full 508 compliance using Blaise 5.12.8. Fortunately, we were able to resolve
all compliance issues identified as “severe” by the client and only had a small number of more minor
issues left unresolved. Bugs identified during testing for this instrument should ideally be corrected in
future versions of Blaise 5, where possible. The testing process also taught us several valuable lessons
that helped us get a few steps closer to 508 compliance, and we hope that future versions of Blaise 5 will
allow us to get even closer.

11. References

ANDI (Accessibility Testing Tool), Accessible Solutions Branch of the Social Security Administration
https://www.ssa.gov/accessibility/andi/help/install.html

Blaise 5 Help Reference Manual, Statistics Netherlands
http://help.blaise.com/

WCAG 2.1 Understanding Docs, W3C Web Accessibility Initiative (WAI)
https://www.w3.org/WAI/WCAG21/Understanding/

	Blaise 5 at Statistics Netherlands
	Maarten Pouwels, Jeroen Schröder, Statistics Netherlands
	Survey Coordination in Blaise 5: A Case Study
	Kenneth Rosbach, United States Department of Agriculture – NASS
	User Experience of the Blaise 5.12 Version Upgrade at Statistics Finland
	Petri Godenhjelm, Pyry Keinonen, Statistics Finland
	Blaise 5 Journey: A Case Study of a CAWI/CATI Survey and the End-to-End Processes and Systems Used
	Angela Belo, Alessio Fiacco, and Colin Miceli, National Centre for Social Research (NatCen)
	What Was Experienced by a Skilled Blaise Programmer in Transitioning from Blaise 4 to Blaise 5
	David Dybicki and Peter Sparks, Survey Research Center, Survey Research Operations, University of Michigan
	A Short History of Blaise Code Generation
	Leif Bochis Madsen, Statistics Denmark
	Speedy Incentives from Blaise 5 Instruments
	Emily Caron, Jerry Copperthwaite, and Rhymney Weidner, RTI International
	The Many Faces of F1
	Siu Chong Wan and Sheba Ephraim, Westat
	Creating a Respondent Self-Scheduling Interface Using Blaise 5
	Andrew D. Piskorowski, Peter Sparks, and Andrew L. Hupp, University of Michigan
	Large Scale Lookups, from an End-User and a Programmer Perspective
	Peter Stegehuis and Naxin Zheng, Westat
	Session Data Preservation and Migration—Problems and Solutions
	Jason Ostergren and Helena Stolyarova, University of Michigan Institute for Social Research
	Design Considerations for Web and CAPI Multimode Using Blaise 5
	Todd Flannery and David Simpson, Westat
	Advanced Editing: Integrating Blaise with a Management System
	Peter Stegehuis and Seth Benson-Flannery, Westat
	Using Paradata to Evaluate the Effect of Changes in the Small Screen Layout
	Elise Alstad and Erdal Kilicdogan, Statistics Norway
	Table Layouts for Editing
	Charles Less, United States Department of Agriculture – NASS
	How Blaise 5 Improves Table Presentation
	G J Boris Allan and Stéphane Ridoré, Westat
	Video Interviewing: An Overview
	Andrew Hupp, University of Michigan
	Video Interviewing: An Optimal Solution for a National Behavioral Health Survey
	Preethi Jayaram, Lilia Filippenko, Curry Spain, Matthew Check, Wendy Reed, Christine Carr, Heidi Guyer, and R. Suresh
	Video Interviewing at the University of Michigan
	Andrew Hupp, University of Michigan
	Converting Social Survey Blaise 4 Questionnaires to Blaise 5:
	Creating a Blaise 5 Application and Modernizing the Labour Force Survey
	Andy Watson and Steve Maurice, Office for National Statistics, United Kingdom
	An Electronic Life History Calendar in a Web Survey
	Joseph Nofziger, Lilia Filippenko, Emilia Peytcheva, RTI International
	System To System Communication
	Ralph van Geenen, Statistics Netherlands
	Replacing Manipula in Blaise 5
	Siu Chong Wan and Ryan Webb, Westat
	How Creating a Pipeline for Automatically Analyzing and Sharing Paradata Facilitated the Ability to Make Data-Driven Adjustments to Improve Data Collections
	Elise Alstad, Erdal Kilicdogan, Sara Grimstad, Katharina Rossbach, Gezim Seferi, Marta Krawczynska, Statistics Norway
	How Creating a Pipeline for Automatically Analyzing and Sharing Paradata Facilitated the Ability to Make Data-Driven Adjustments to Improve Data Collections
	Elise Alstad, Erdal Kilicdogan, Sara Grimstad, Katharina Rossbach, Gezim Seferi, Marta Krawczynska, Statistics Norway
	Integrating Blaise 5 and DDI Lifecycle 3.3
	Dan Smith, Jeremy Iverson, Colectica
	Automation Testing Experience with Blaise
	Kay Brenner, Gayu Subramanian and Rittu Jittu, Westat
	Experiences in Accessibility and 508-Compliance Testing at RTI
	Al-Nisa Berry, Emily Caron, Melissa Page, and Rhymney Weidner, RTI International

