= -
5 s

Blaise 5
Custom Blaise Web/MVC apps

Based on Blaise 5.14, works the same on 5.13

Bas Huijts
shj.huijts@cbs.nl

= Why do we need customization

= Angular basics
= Customization
= Q&A

*)

First things first [1]

Blaise Control Centre Blaise Server Manager

android e ER Windows %

*)

First things first [2]

—] Server T -
“ e ASP.NET | MVC | Web API

— am — [YNGULAR

*)

Why customizing

= Need for custom layout

= Need for custom behaviour

= Accessing external data

functi

on

#0450c2 4

*)

Angular basics

- Component: import { Component } from

HTML Template inport 1 Injectable } fro
Typescript class

alInjectable(
CSS SeleCtOI’ i |:r-::-?'t { Directive, ElementRef } from
Optionally css styles

aDirective(

ealartnr: [smmnd vaect i

rt { Injectable } from 'gangular/core’;

= Service

impo
import { HttpRequest, HttpHandler, HttpEvent, HttpInterceptor } from
import { Observable } fro rxjs';

= Directive
aInjectable()

export Cl|i2-Z'I‘ nterceptor ttpInterceptor
= [nterceptor | g et {

intercept(request: HttpRequest<unknown>, next: HttpHandler): Observable<HttpEvent<unknown

return next.handle(request);

Component

= Different layout/ view for a certain
Input control, i.e. clock-view instead
of stringtextbox

= Add missing functionality to a
control, in my demo converting
timezones using an external web api

/AQ—:% Clock
IEJR 3

*)

Demo Component customization

= Recap

= Created an empty custom application

= Added a custom property to make Angular aware of the customization
= Created the custom clock component -> Blaise StringTextBox

= Create a non Blaise component

= Added a non Blaise Angular service

*)

= Client side rules

= Field Converters

convertFromString(val : , TieldInfo:

fromIsO{valuestr);

.isValid

.convertFromString(v r, fieldInfo

Demo Service customization (Blaise)

= Recap

= Added a custom converter based on the default StringFieldConverterService
= Added a prefix to the value when needed
= Added some logging

*)

Directive

= Add fancy animations to controls

{ Directive, ElementRef, HostListener }

(

— selector:

elementRef

— elementRef:

a)
onMouseOver

ﬁ .elementRef.nativeElement

.animate([], {
duration: 1000,
iteration: 1

}
.play();

Demo Directive customization (hon Blaise)

= Recap

= Create a non Blaise directive
= Made Angular aware of the directive
= Applied it to elements

*)

Directive

= Override Blaise AriaDirective

import { Directive, ElementRef } from 'gangular/core’;
import { AriaDirective } from 'gblaise/core’;

abirective(

selector: '[bl5Aria]
export CustomAriaDirective AriaDirective {
element: ElementRef
element);

handleArialLabel(): void

.aria0Options.label.length > @ &5 ! .ariaOptions.label.startsWith('IBUC")

.aria0Options.label = "IBUC 2023 - .aria0Options.label} ;

.handleArialLabel();

Demo Directive customization (Blaise)

= Recap

= Created an custom Blaise AriaDirective
= Make Angular aware of the directive
= Apply it to elements

*)

Interceptor

= Front-end <-> back-end {meEs |

HttpRequest,
. HttpHandler,
u AUthentlcate HttpEvent,
HttpInterceptor }
{ Observable }

= Authorize
()

" Logging — - :
intercept(request: , next:

- Add CUStom header — next.handle .addToken(request));

addToken = {request:
request.clone({
setHeaders:
IBUC:

Demo Interceptor customization (hon Blaise)

= Recap

= Created an interceptor to add a custom header
= Make Angular aware of it

*)

Testing

On the team, we rely on testing and we always seek better | & \iew project on GitHub
tools to make our life easier. That's why we created
Karma - a test runner that fits all our needs. £ npm install karma

= Karma as testing framework

= Unit tests
= Code coverage

Demo Unit testing with Karma

= Recap

= Add Karma to our application
= Added unit tests to CustomAriaDirective
= Created code coverage report

*)

= Changed a component to use another view

= Used an standalone service to add functionality

= Overrided an Blaise service to change the entered value
= Added an directive to apply an hover animation

= Overrided an Blaise directive to prefix an label

= Implemented an interceptor to add an token to regeusts
= Added unit testing to our application

= Generated code coverage of our custom aria directive

*)

v

Thank you for attention

*)

	Slide 1: Blaise 5 Custom Blaise Web/MVC apps
	Slide 2: Agenda
	Slide 3: First things first [1]
	Slide 4: First things first [2]
	Slide 5: Why customizing
	Slide 6: Angular basics
	Slide 7: Component
	Slide 8: Demo Component customization
	Slide 9: Service
	Slide 10: Demo Service customization (Blaise)
	Slide 11: Directive
	Slide 12: Demo Directive customization (non Blaise)
	Slide 13: Directive
	Slide 14: Demo Directive customization (Blaise)
	Slide 15: Interceptor
	Slide 16: Demo Interceptor customization (non Blaise)
	Slide 17: Testing
	Slide 18: Demo Unit testing with Karma
	Slide 19: Recap
	Slide 20: Q&A
	Slide 21: Thank you for attention

