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Overview

▪ Blaise Data Provider

▪ Blaise SQL versus Native SQL

▪ Record Filters

▪ Optimizing query performance

▪ Data access methods in Manipula and API

▪ Data Conversion methods during install

▪ New features added to BDIX files from 5.11 on

▪ History table

▪ Changing data outside Blaise

▪ Hospital
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Blaise Data Provider

▪ Blaise 5 uses BDIX files as data files

▪ Data Interface

▪ DataSource type
▪ RDBMS, Text, JSON, XAML, Text

▪ Connection information
▪ Connection string

▪ In case of text files
▪ Separator, String Delimiter, et cetera

▪ In case of RDBMS
▪ Contains definitions for the available objects in the database

▪ Tables, Indexes, Triggers, Sequences
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Blaise Data Provider

▪ .NET Data Provider

▪ Is used to access data in Blaise data files (*.BDIX)

▪ Accesses data in BDBX (Sqlite), RDBMS, Json, Text and XML files

▪ Internally used by Blaise applications, like Data Service, Data Viewer, 
Manipula and DataLink API

▪ StatNeth.Blaise.Data.Provider.dll
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Blaise Data Provider

▪ Has objects that are common to a .NET Data Provider

▪ BlaiseConnection

▪ Can be used to open connection to data interface (*.BDIX) and general data 
interface files (*.BSDI, *.BCDI, *.BADI, etc.)

▪ BlaiseCommand

▪ CommandText
▪ Can be used to execute statements against a BlaiseConnection
▪ Select statements

▪ Native SQL statements

▪ Update statement (added in 5.14)
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Blaise Data Provider

▪ BlaiseDataAdapter

▪ Can be used to fill a System.Data.DataTable table based on the CommandText that 
has been specified in a Blaise Command

▪ Can be used to fill a Blaise dataset based on the CommandText that has been 
specified in a Blaise Command

▪ BlaiseDataReader

▪ Can be used to fill a System.Data.DataReader based on the CommandText that has 
been specified in a BlaiseCommand



Accessing data

Blaise SQL versus Native SQL



Blaise SQL

▪ SQL understood by Blaise Data 
Provider

▪ Is used by all Blaise applications and 
DataLink API to access BDIX data

▪ Knows the fields in the associated 
Blaise data model

▪ Can access columns that are present 
in a bdix

▪ Is data source and table structure 
independent

Native SQL

▪ Is native to the underlying 
database that a BDIX is targetting

▪ Is not limited to the tables which 
are present in the bdix

9

Blaise SQL versus Native SQL
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Blaise SQL

▪ Supports Select and Update (in 5.14) statements

▪ Syntax rules:

▪ Blaise field names must be fully qualified field names
▪ Names can be delimited by `  to escape SQL reserved words

▪ Special columns must be surrounded by square brackets
▪ [FormID], [ValidationStatus], [SaveStatus]

Demo Blaise SQL
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Using SQL – Methods and functions

▪ Methods will use the connection as specified in the bdix

▪ DataLink API

▪ IDataLink7.ExecuteNonQuery(string commandText, bool isNative = true)

▪ Manipula

▪ QueryFile.Open(selectStatement)

▪ ExecuteQuery(selectStatement, QueryFile)
▪ Can be used with InputFile, OutputFile, UpdateFile and SurveyDataFile

▪ Blaise datamodel is dynamically generated for QueryFile

▪ ExecuteNonQuery(dmlStatement)

▪ Can be used in an ActionSetup during a data entry session!

Demo: Using SQL in Manipula



Record Filters

Record Filters and Query Performance
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Record Filters

▪ Way to filter the data and to only get the filtered data back

▪ Must be specified in Blaise SQL syntax

▪ Will be translated into an SQL where clause
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Record Filter support in Blaise Tools

▪ DataLink API
▪ Delete method

▪ Read method to retrieve datasets

▪ DataEntry API / Apps
▪ DownloadCases

▪ UploadData

▪ DataInterface
▪ RecordFilter property

▪ Data Viewer

▪ Manipula
▪ File Settings and SetRecordFilter method

▪ DownloadData and UploadData functions
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Using Blaise Field Names

▪ Must be fully qualified field names:

Address.Street = 'Kerkweg'

Person[1].Name = 'John'

NrOfPeople > 2 and Town = 'Kerkrade'

(NrOfPeople > 2) or (Town like 'Ams%' and IntervNo in (1,2))

▪ Names can be delimited by `

`NrOfPeople` > 4 and `Town` = 'Kerkrade'
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Using special columns and null / not null

▪ Special Blaise columns must be delimited by [] :
[ValidationStatus] in (0,1)

[FormID] > 1000

[SaveStatus] = 'Completed'

[Mode] in ('CAWI', 'CAPI')

 

▪ Filtering on null and not null values
▪ Street is null

▪ Town is not null

▪ [Mode] is null
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Record Filter: Filtering Key Values

▪ Allways specify which key to filter via [KEYNAME]

▪ [KeyValue] is a string value and must be delimited by '

▪ Key Values can have several formats:
[KEYNAME] = PRIMARY AND [KEYVALUE] = '12'         // Filter on primary key

[KEYNAME] = SECONDARY AND [KEYVALUE] >= '12'      // Filter on secondary key 

[KEYNAME] = <keyname> AND [KEYVALUE] >= 'Dennis'     // Filter on key with name <keyname> 

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12  14 '    // formatted length keyvalue

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12,14'    // comma separated key value

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12;14'      // key value separated by ;

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12,"Hello world"' // second key value delimited by " 
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Optimizing query performance

▪ Good: All items that are in record filter have a column in the database

▪ Corresponding columns will be used in where clause

▪ Filter can be applied in the database directly

▪ Bad: One or more of the items in record filter do not have a column

▪ Data to be filtered is stored in the data stream only 

▪ All records must be read because we cannot filter the data in the database itself!

▪ Requested record data will be loaded into a ADO.NET DataTable

▪ DataTable will be filtered with the specified filter using by using a ADO.NET DataView

▪ Filtered data in DataView will be returned
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Optimizing query performance

Data Partition 
Type

Filtering key fields Filtering non-key fields Comment

Stream ☺  Key fields have dedicated columns, non-key 
fields are stored in data stream

Flat, Blocks ☺ ☺ Every field has its own column

Flat, No blocks ☺ ☺ Every field has its own column

In Depth ☺  Non-key fields must be filtered by using the in-
depth data table; can have many rows

Generic Stream   No way to filter based on individual field values; 
key values are stored as a concatenating string

Generic In Depth   Fields must be filtered by using the in depth 
data table; can have many rows

Single Table ☺ ☺ Every field has its own column
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Optimizing query performance

▪ Recommendation

▪ Investigate which record filters that you want to use

▪ Add a flat data table to your bdix that contains columns for items that don’t have a 

dedicated column in the database or are stored in a in-depth way only

▪ Create indexes on columns to optimize performance even further 

▪ Blaise Data Provider will use these columns automatically when they are present

▪ Populate flat table when the other tables have already data

▪ Will be done by automatically by Hospital in 5.14

 
Demo: add flat table to BDIX



Data Conversion
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Install Survey - Data Update Options

▪ None

▪ Harmless change update

▪ Data Conversion Setup

▪ Installation package contains an incompatible 
datamodel and a Manipula data conversion setup

▪ Setup is executed to perform the data update

▪ New option in 5.14: Implicit data conversion

▪ Last two options have a two step installation 
process

▪ The data conversion is executed on the first install. 
Once completed, the survey is still running with the old 
meta and data files.

▪ At this point you can look whether the conversion was 
executed succesfully

▪ The second install will update the survey and data files 
at the deploy location with the converted data.
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Data Conversion Options

▪ Implicit data conversion

▪ Can be performed regardless whether the update is compatible, harmless or 
harmful
▪ Data will be copied to the new BDIX based on field name

▪ Can be used to switch data source
▪ For example: from BDBX to SQL Server

▪ Can be used to switch data partition type
▪ For example: from Stream to SingleTable

▪ Session data will be preserved if:
▪ the new datamodel is compatible with the old one
▪ the new datamodel has harmless changes only

▪ Can also be executed via DataLink API: DataLinkManager.ConvertData



BDIX New Features

Data related new features



New columns 

▪ Goal: to store information about save actions

▪ Background:
▪ In the past we couldn’t tell who/which process saved data
▪ Who did what at what time to the data?

▪ In order to address this we have added additional columns to the FormInfo table
▪ TimeCreated
▪ Time that the record was saved for the first time

▪ LastModication
▪ Time stamp last save

▪ IdentityName
▪ Name of the user/identity who saved the record

▪ SourceInfo
▪ Application/service that saved the data

▪ Setup name if data is stored by Manipula

▪ Columns can also be added to SingleTable bdix in 5.14 



Optional feature: add a History Table

▪ Data record that is going to be saved is also in a history table on each save

▪ Allows you to keep track of changes that are made to a record

▪ Can be set when table definitions are going to be created

▪ Adds a history table to the bdix
▪ Same structure as FormInfo table + HistoryID and UpdateKind colums
▪ <datamodel>_History / Blaise_History
▪ DataStream contains complete record data

▪ Implemented by using database triggers

▪ Triggers are created on FormInfo table
▪ After Insert, After Update, After Delete

▪ SQLite/BDBX, SQL Server, Oracle, PostgreSQL and MySQL
▪ Requires Create Trigger/ Drop Trigger privileges

Demo: History table



ReadDataStream setting

▪ Can improve read performance when a non-stream data partition type  
is being used

▪ Reads data stream instead of table data

▪ Options:

▪ At design time:
▪ Setting bdix; always read data stream; default = false

▪ At runtime: 
▪ Manipula file setting
▪ ReadDataStream = yes

▪ DataLink API: ReadDataStream parameter in Read methods



Changing Table Data 
Outside Blaise

Consequences and actions needed



Changing data outside Blaise

▪ Changes are not always visible in Blaise tools after a change

▪ Reason: record data is also stored as a byte array in datastream column

▪ Distinguish between direct access and data service access

▪ Direct access: bdix that targets the database directly
▪ Has connection string to SQL, MySQL, BDBX, et cetera

▪ Data service access: relative bdix files, Remote Datalink and surveydatafiles
▪ Have a connection to a Blaise data server
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Direct versus DataService Access

Data Viewer

DataLink API

Manipula

BDIX Data Provider Database

Data Viewer

DataLink API Data Service

Manipula

BDIX Data Provider Database

Client application using a direct connection
BDIX contains the connection to the target database

Client application using a relative/surveydatafile/remote connection to a Blaise Data Server
DataService on dataServer uses a BDIX that has a direct connection to the data source



Direct access 

▪ ReadRecord

▪ Data Partition Type is leading and 
determines how record data is read

▪ DataSets

▪ Data Partition Type is leading and 
determines how record data is read

Access via Data Service

▪ ReadRecord

▪ Data Partition Type is leading and 
determines how record data is read

▪ DataSets

▪ 5.13 and earlier always reads binary 
record stream

▪ 5.14 and later will respect Data Partition 
Type

▪ Fix: Binary record stream has to be 
synchronized with the changed table data

Changing data outside Blaise

Demo: changing table data



Changing data outside Blaise

▪ How to fix?

▪ Record data in DataStream column must be synchronized with table data

▪ Possible ways to do this
▪ Manipula with an updatefile which reads and writes all records

▪ Hospital tool (5.14)



Hospital Tool

Check whether a database is in good 
condition



Hospital Tool

▪ Available in ribbon whenever you open a 
RDBMS based BDIX in Control Centre

▪ Performs a health check on a BDIX

▪ Replaces Data Consistency Check

▪ Checks whether the data of a BDIX is consistent

▪ Has log and recover options



Hospital Tool: Features

▪ Checks whether data in data tables is consistent with content binary record stream

▪ Recover options
▪ Update record stream with current content of data tables (default)
▪ Update data tables with current content of record stream

▪ Output targets
▪ Report only; write inconsistencies found to a log file
▪ Recover inconsistencies found directly in target database
▪ Export inconsistencies found to a separate BDBX 

▪ Settings
▪ Force reading and writing of all records; by default only the records that need a fix will be written
▪ Record Filter: perform the check / recover only for a selection of records

▪ Rebuild indexes option

Demo: Hospital



Thank you 
for your time



www.blaise.com blaise@cbs.nl @blaisecbs @Blaise5

http://www.blaise.com/
mailto:blaise@cbs.nl
mailto:blaise@cbs.nl
http://www.twitter.com/blaisecbs
http://www.facebook.com/blaisecbs
https://www.youtube.com/channel/UCx_OxtM9lOWIkNq39LXAIZQ/
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