

Data

3

Overview

▪ Blaise Data Provider

▪ Blaise SQL versus Native SQL

▪ Record Filters

▪ Optimizing query performance

▪ Data access methods in Manipula and API

▪ Data Conversion methods during install

▪ New features added to BDIX files from 5.11 on

▪ History table

▪ Changing data outside Blaise

▪ Hospital

4

Blaise Data Provider

▪ Blaise 5 uses BDIX files as data files

▪ Data Interface

▪ DataSource type
▪ RDBMS, Text, JSON, XAML, Text

▪ Connection information
▪ Connection string

▪ In case of text files
▪ Separator, String Delimiter, et cetera

▪ In case of RDBMS
▪ Contains definitions for the available objects in the database

▪ Tables, Indexes, Triggers, Sequences

5

Blaise Data Provider

▪ .NET Data Provider

▪ Is used to access data in Blaise data files (*.BDIX)

▪ Accesses data in BDBX (Sqlite), RDBMS, Json, Text and XML files

▪ Internally used by Blaise applications, like Data Service, Data Viewer,
Manipula and DataLink API

▪ StatNeth.Blaise.Data.Provider.dll

6

Blaise Data Provider

▪ Has objects that are common to a .NET Data Provider

▪ BlaiseConnection

▪ Can be used to open connection to data interface (*.BDIX) and general data
interface files (*.BSDI, *.BCDI, *.BADI, etc.)

▪ BlaiseCommand

▪ CommandText
▪ Can be used to execute statements against a BlaiseConnection
▪ Select statements

▪ Native SQL statements

▪ Update statement (added in 5.14)

7

Blaise Data Provider

▪ BlaiseDataAdapter

▪ Can be used to fill a System.Data.DataTable table based on the CommandText that
has been specified in a Blaise Command

▪ Can be used to fill a Blaise dataset based on the CommandText that has been
specified in a Blaise Command

▪ BlaiseDataReader

▪ Can be used to fill a System.Data.DataReader based on the CommandText that has
been specified in a BlaiseCommand

Accessing data

Blaise SQL versus Native SQL

Blaise SQL

▪ SQL understood by Blaise Data
Provider

▪ Is used by all Blaise applications and
DataLink API to access BDIX data

▪ Knows the fields in the associated
Blaise data model

▪ Can access columns that are present
in a bdix

▪ Is data source and table structure
independent

Native SQL

▪ Is native to the underlying
database that a BDIX is targetting

▪ Is not limited to the tables which
are present in the bdix

9

Blaise SQL versus Native SQL

10

Blaise SQL

▪ Supports Select and Update (in 5.14) statements

▪ Syntax rules:

▪ Blaise field names must be fully qualified field names
▪ Names can be delimited by ` to escape SQL reserved words

▪ Special columns must be surrounded by square brackets
▪ [FormID], [ValidationStatus], [SaveStatus]

Demo Blaise SQL

11

Using SQL – Methods and functions

▪ Methods will use the connection as specified in the bdix

▪ DataLink API

▪ IDataLink7.ExecuteNonQuery(string commandText, bool isNative = true)

▪ Manipula

▪ QueryFile.Open(selectStatement)

▪ ExecuteQuery(selectStatement, QueryFile)
▪ Can be used with InputFile, OutputFile, UpdateFile and SurveyDataFile

▪ Blaise datamodel is dynamically generated for QueryFile

▪ ExecuteNonQuery(dmlStatement)

▪ Can be used in an ActionSetup during a data entry session!

Demo: Using SQL in Manipula

Record Filters

Record Filters and Query Performance

13

Record Filters

▪ Way to filter the data and to only get the filtered data back

▪ Must be specified in Blaise SQL syntax

▪ Will be translated into an SQL where clause

14

Record Filter support in Blaise Tools

▪ DataLink API
▪ Delete method

▪ Read method to retrieve datasets

▪ DataEntry API / Apps
▪ DownloadCases

▪ UploadData

▪ DataInterface
▪ RecordFilter property

▪ Data Viewer

▪ Manipula
▪ File Settings and SetRecordFilter method

▪ DownloadData and UploadData functions

15

Using Blaise Field Names

▪ Must be fully qualified field names:

Address.Street = 'Kerkweg'

Person[1].Name = 'John'

NrOfPeople > 2 and Town = 'Kerkrade'

(NrOfPeople > 2) or (Town like 'Ams%' and IntervNo in (1,2))

▪ Names can be delimited by `

`NrOfPeople` > 4 and `Town` = 'Kerkrade'

16

Using special columns and null / not null

▪ Special Blaise columns must be delimited by [] :
[ValidationStatus] in (0,1)

[FormID] > 1000

[SaveStatus] = 'Completed'

[Mode] in ('CAWI', 'CAPI')

▪ Filtering on null and not null values
▪ Street is null

▪ Town is not null

▪ [Mode] is null

17

Record Filter: Filtering Key Values

▪ Allways specify which key to filter via [KEYNAME]

▪ [KeyValue] is a string value and must be delimited by '

▪ Key Values can have several formats:
[KEYNAME] = PRIMARY AND [KEYVALUE] = '12' // Filter on primary key

[KEYNAME] = SECONDARY AND [KEYVALUE] >= '12' // Filter on secondary key

[KEYNAME] = <keyname> AND [KEYVALUE] >= 'Dennis' // Filter on key with name <keyname>

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12 14 ' // formatted length keyvalue

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12,14' // comma separated key value

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12;14' // key value separated by ;

[KEYNAME] = PRIMARY AND [KEYVALUE] = '12,"Hello world"' // second key value delimited by "

18

Optimizing query performance

▪ Good: All items that are in record filter have a column in the database

▪ Corresponding columns will be used in where clause

▪ Filter can be applied in the database directly

▪ Bad: One or more of the items in record filter do not have a column

▪ Data to be filtered is stored in the data stream only

▪ All records must be read because we cannot filter the data in the database itself!

▪ Requested record data will be loaded into a ADO.NET DataTable

▪ DataTable will be filtered with the specified filter using by using a ADO.NET DataView

▪ Filtered data in DataView will be returned

19

Optimizing query performance

Data Partition
Type

Filtering key fields Filtering non-key fields Comment

Stream ☺  Key fields have dedicated columns, non-key
fields are stored in data stream

Flat, Blocks ☺ ☺ Every field has its own column

Flat, No blocks ☺ ☺ Every field has its own column

In Depth ☺  Non-key fields must be filtered by using the in-
depth data table; can have many rows

Generic Stream   No way to filter based on individual field values;
key values are stored as a concatenating string

Generic In Depth   Fields must be filtered by using the in depth
data table; can have many rows

Single Table ☺ ☺ Every field has its own column

20

Optimizing query performance

▪ Recommendation

▪ Investigate which record filters that you want to use

▪ Add a flat data table to your bdix that contains columns for items that don’t have a

dedicated column in the database or are stored in a in-depth way only

▪ Create indexes on columns to optimize performance even further

▪ Blaise Data Provider will use these columns automatically when they are present

▪ Populate flat table when the other tables have already data

▪ Will be done by automatically by Hospital in 5.14

Demo: add flat table to BDIX

Data Conversion

22

Install Survey - Data Update Options

▪ None

▪ Harmless change update

▪ Data Conversion Setup

▪ Installation package contains an incompatible
datamodel and a Manipula data conversion setup

▪ Setup is executed to perform the data update

▪ New option in 5.14: Implicit data conversion

▪ Last two options have a two step installation
process

▪ The data conversion is executed on the first install.
Once completed, the survey is still running with the old
meta and data files.

▪ At this point you can look whether the conversion was
executed succesfully

▪ The second install will update the survey and data files
at the deploy location with the converted data.

23

Data Conversion Options

▪ Implicit data conversion

▪ Can be performed regardless whether the update is compatible, harmless or
harmful
▪ Data will be copied to the new BDIX based on field name

▪ Can be used to switch data source
▪ For example: from BDBX to SQL Server

▪ Can be used to switch data partition type
▪ For example: from Stream to SingleTable

▪ Session data will be preserved if:
▪ the new datamodel is compatible with the old one
▪ the new datamodel has harmless changes only

▪ Can also be executed via DataLink API: DataLinkManager.ConvertData

BDIX New Features

Data related new features

New columns

▪ Goal: to store information about save actions

▪ Background:
▪ In the past we couldn’t tell who/which process saved data
▪ Who did what at what time to the data?

▪ In order to address this we have added additional columns to the FormInfo table
▪ TimeCreated
▪ Time that the record was saved for the first time

▪ LastModication
▪ Time stamp last save

▪ IdentityName
▪ Name of the user/identity who saved the record

▪ SourceInfo
▪ Application/service that saved the data

▪ Setup name if data is stored by Manipula

▪ Columns can also be added to SingleTable bdix in 5.14

Optional feature: add a History Table

▪ Data record that is going to be saved is also in a history table on each save

▪ Allows you to keep track of changes that are made to a record

▪ Can be set when table definitions are going to be created

▪ Adds a history table to the bdix
▪ Same structure as FormInfo table + HistoryID and UpdateKind colums
▪ <datamodel>_History / Blaise_History
▪ DataStream contains complete record data

▪ Implemented by using database triggers

▪ Triggers are created on FormInfo table
▪ After Insert, After Update, After Delete

▪ SQLite/BDBX, SQL Server, Oracle, PostgreSQL and MySQL
▪ Requires Create Trigger/ Drop Trigger privileges

Demo: History table

ReadDataStream setting

▪ Can improve read performance when a non-stream data partition type
is being used

▪ Reads data stream instead of table data

▪ Options:

▪ At design time:
▪ Setting bdix; always read data stream; default = false

▪ At runtime:
▪ Manipula file setting
▪ ReadDataStream = yes

▪ DataLink API: ReadDataStream parameter in Read methods

Changing Table Data
Outside Blaise

Consequences and actions needed

Changing data outside Blaise

▪ Changes are not always visible in Blaise tools after a change

▪ Reason: record data is also stored as a byte array in datastream column

▪ Distinguish between direct access and data service access

▪ Direct access: bdix that targets the database directly
▪ Has connection string to SQL, MySQL, BDBX, et cetera

▪ Data service access: relative bdix files, Remote Datalink and surveydatafiles
▪ Have a connection to a Blaise data server

30

Direct versus DataService Access

Data Viewer

DataLink API

Manipula

BDIX Data Provider Database

Data Viewer

DataLink API Data Service

Manipula

BDIX Data Provider Database

Client application using a direct connection
BDIX contains the connection to the target database

Client application using a relative/surveydatafile/remote connection to a Blaise Data Server
DataService on dataServer uses a BDIX that has a direct connection to the data source

Direct access

▪ ReadRecord

▪ Data Partition Type is leading and
determines how record data is read

▪ DataSets

▪ Data Partition Type is leading and
determines how record data is read

Access via Data Service

▪ ReadRecord

▪ Data Partition Type is leading and
determines how record data is read

▪ DataSets

▪ 5.13 and earlier always reads binary
record stream

▪ 5.14 and later will respect Data Partition
Type

▪ Fix: Binary record stream has to be
synchronized with the changed table data

Changing data outside Blaise

Demo: changing table data

Changing data outside Blaise

▪ How to fix?

▪ Record data in DataStream column must be synchronized with table data

▪ Possible ways to do this
▪ Manipula with an updatefile which reads and writes all records

▪ Hospital tool (5.14)

Hospital Tool

Check whether a database is in good
condition

Hospital Tool

▪ Available in ribbon whenever you open a
RDBMS based BDIX in Control Centre

▪ Performs a health check on a BDIX

▪ Replaces Data Consistency Check

▪ Checks whether the data of a BDIX is consistent

▪ Has log and recover options

Hospital Tool: Features

▪ Checks whether data in data tables is consistent with content binary record stream

▪ Recover options
▪ Update record stream with current content of data tables (default)
▪ Update data tables with current content of record stream

▪ Output targets
▪ Report only; write inconsistencies found to a log file
▪ Recover inconsistencies found directly in target database
▪ Export inconsistencies found to a separate BDBX

▪ Settings
▪ Force reading and writing of all records; by default only the records that need a fix will be written
▪ Record Filter: perform the check / recover only for a selection of records

▪ Rebuild indexes option

Demo: Hospital

Thank you
for your time

www.blaise.com blaise@cbs.nl @blaisecbs @Blaise5

http://www.blaise.com/
mailto:blaise@cbs.nl
mailto:blaise@cbs.nl
http://www.twitter.com/blaisecbs
http://www.facebook.com/blaisecbs
https://www.youtube.com/channel/UCx_OxtM9lOWIkNq39LXAIZQ/

	Slide 1
	Slide 2: Data
	Slide 3: Overview
	Slide 4: Blaise Data Provider
	Slide 5: Blaise Data Provider
	Slide 6: Blaise Data Provider
	Slide 7: Blaise Data Provider
	Slide 8: Accessing data
	Slide 9: Blaise SQL versus Native SQL
	Slide 10: Blaise SQL
	Slide 11: Using SQL – Methods and functions
	Slide 12: Record Filters
	Slide 13: Record Filters
	Slide 14: Record Filter support in Blaise Tools
	Slide 15: Using Blaise Field Names
	Slide 16: Using special columns and null / not null
	Slide 17: Record Filter: Filtering Key Values
	Slide 18: Optimizing query performance
	Slide 19: Optimizing query performance
	Slide 20: Optimizing query performance
	Slide 21: Data Conversion
	Slide 22: Install Survey - Data Update Options
	Slide 23: Data Conversion Options
	Slide 24: BDIX New Features
	Slide 25: New columns
	Slide 26: Optional feature: add a History Table
	Slide 27: ReadDataStream setting
	Slide 28: Changing Table Data Outside Blaise
	Slide 29: Changing data outside Blaise
	Slide 30: Direct versus DataService Access
	Slide 31: Changing data outside Blaise
	Slide 32: Changing data outside Blaise
	Slide 33: Hospital Tool
	Slide 34: Hospital Tool
	Slide 35: Hospital Tool: Features
	Slide 36: Thank you for your time
	Slide 37

