
Blaise 5
Data Entry Verification & ZoneDef
samples

▪ There are certain core items in the Blaise 5 suite of programs

▪ Windows & browser DEPs

▪ iOS & Android apps

▪ Control Centre

▪ Data & Meta Viewers

▪ Converters

▪ Other items are provided as samples (with the source code)

▪ SAS/SPSS/Stata export

▪ CMA

▪ Data Entry Verification

▪ Zone definer

▪ Other API demo apps
2

Background (1)

▪ Samples are designed to

▪ show the user how to achieve certain things
▪ allow the user to adapt the sample to fit their own use-case

▪ History

▪ There was a period where certain items were deemed to be something more than samples
but less than core

▪ This idea has been reversed and samples should now ship with the source code

▪ Patching

▪ Allowing the user to update the source code also allows the user to produce a patch which
can be shared with other users, e.g.
▪ someone translates the user interface in the Data Verification Tool
▪ someone adds a new export function to the SAS/SPSS/Stata sample

3

Background (2)

4

What is Data Entry Verification?

▪ Also called Double Data Entry

▪ First data entered by operator; second pass by verifier

▪ Verifier has 2 options for verification:

▪ Blind: first pass data not visible; if change is made select previous or current value

▪ Open: data is visible; if change is made then verifier can select a reason for the
changed value

▪ Uses separate verification datamodel

▪ Content/Look of verification dialog

▪ Content of log file

▪ This program provides facilities similar, but not identical, to what can be found in
Blaise 4

▪ it’s not identical because of differences in the architecture of the two versions
▪ e.g. Ditto is not available as a base-action

▪ It is set up as a custom Windows DEP program

▪ it uses the API (therefore requiring an API license)

▪ the user interface is written in WPF

▪ it shares a DLL with the Zone definer program to provide various shared items
▪ e.g. the records browser and the menu

5

Data Entry Verification (1)

▪ History

▪ initial setup created pre-corona time

▪ various new items were needed in the infra

▪ no-one seemed to use it

▪ Recent activity

▪ someone complained it didn’t work

▪ after reviewing the code and how it had been delivered, a rewrite took place

▪ this rewrite tightened up the code-base somewhat, allowed using a remote server as the source
instead of just a local one and converted the coding pattern to MVVM

6

Data Entry Verification (2)

▪ WPF (amongst others) allows controls to be linked to a variable in the codebase

▪ When the value of the variable changes, it can be reflected in the display

▪ When an event occurs in the display, it can be reflected back to the codebase

7

Data binding

My bound text Property

One way

Two way

OneWayToSource

OneTime

▪ MVVM is yet another programming architectural model, c.f.

▪ MVC (model-view-controller)

▪ MVP (model-view-presenter)

▪ MVB (model-view-binder)

▪Came out of Microsoft ca. 2005

▪ Leverages XAML and databindings

8

Model-View-ViewModel (1)

9

Model-View-ViewModel (2)

▪ There are many websites that you can find that will define what MVVM is, how it
works and what it’s advantages are

▪ Some of these sites are actually useful but to reduce it to a basic explanation

Model

underlying
business
logic & actual
data

ViewModel

View

what the user sees

abstraction of
the data & view

▪ Infra

▪ you bind to a property
▪ to get notifications about updates you implement INotifyPropertyChanged in the ViewModel

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName)

{

if (PropertyChanged != null)

{

PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}

}

10

Model-View-ViewModel (3)

▪ Set up property to implement OnPropertyChanged

private Visibility _optionsVisibility = Visibility.Collapsed;

public Visibility OptionsVisibility

{

get { return _optionsVisibility; }

set {

if (_optionsVisibility == value)

return;

_optionsVisibility = value;

OnPropertyChanged("OptionsVisibility");

}

}
11

Model-View-ViewModel (4)

▪ Bind in the XAML

BOptionsVisibility=“{Binding DataContext.OptionsVisibility,

RelativeSource={RelativeSource AncestorType={x:Type Window}}}”

▪ BOptionsVisibility is a DependencyProperty in the user control that implements the
menu of buttons

▪ Here it is bound to the OptionsVisibility property in the data context

▪ In the user control, BOptionsVisibility is bound to the Visibility of the image on the
button itself

Visibility="{Binding BOptionsVisibility,

RelativeSource={RelativeSource AncestorType=UserControl}}"

12

Model-View-ViewModel (5)

13

Model-View-ViewModel (6)

▪ DataContext property of .NET FrameWork:

▪ defines where to find the bound variables

▪ DataContext = this;

▪ sets the datacontext to the current module

▪ properties to be defined in the current module

▪ DataContext = <instance-of-viewmodel-object>

▪ sets the datacontext to the specified instance

▪ properties to be defined in the specified instance

14

Data Entry Verification (1)

15

Data Entry Verification (2)

▪ There is a minimal set of requirements that must be satisfied before anything will
happen

▪ server, appropriately authorized id and password, port number, protocol
▪ instrument, bdix (to point to the actual data)
▪ location of the verification datamodel (a default setup is supplied with Blaise 5)
▪ location of the log file
▪ a special dataentrysettings entry if blind verification is used: Existing forms but create an empty

▪ Extras

▪ there is a minimal records browser
▪ searching works on the page, not on the whole dataset, and on the first field of the primary key
▪ ordering works on the page, not on the whole dataset

▪ it has two modes – show everything at once/show in pages
▪ if you have a lot of records then showing everything at once will break your memory – there is no check on this

▪ positioning of menu

16

Data Entry Verification (3)

17

Data Entry Verification (4)

Demo

▪ If this doesn’t do what you want, you have the source code – adapt it

▪ If you find what you think is a bug – fix it and let us know you have done and how

▪ If you think your adaptation will be useful for other people – make a patch and
put it in the Blaise store

▪ Think about the session data – if you don’t throw it away at the end of the data
verification session, you’ll get a mismatch in the pop-ups

▪ because on startup, the record is read from the real database, not the session database

18

Data Entry Verification (5)

▪ In Blaise 4 there is a feature called Zonedef which allows you to display an active
image (multipage-TIFF) alongside a data entry session where corresponding areas of
the image are highlighted when a field is entered

▪ This feature relies on a third-party control

▪ In Blaise 5, as with the Data Entry Verification program, this feature is implemented
as a custom DEP sample and utilizes the API

▪ The utility uses C# and Blaise 5

▪ the image control is based on native C# controls

▪ highlighting is based on native C# controls

▪ zone definition can be achieved by a visual editor or, if a migrated B4 definition file is used, via a
program akin to the B4 Registry Editor

19

Zone definer (1)

Zone definer (2)

20

Zone definer (3)

▪ .bod to .bodx – Zone4To5, A simple conversion wizard

▪ In B4, ZoneDef settings are held in a specific type of file - .bod; in B5 it is .bodx or .xml

▪ The B5 variant has extra items to hold things like the servername and port number
but also the new privacy flag

▪ Zone4To5 shows various panels to display
various items needed for conversion; it does very
few clever things with WPF and is an
easy/medium program

▪ You can do the Exercises that are listed in
the comments

21

▪ .bodx Editor - A simple editor for a .bodx file

▪ Implements New (item), Open file, Save file, Save file As, item cut, copy, paste, delete

▪ View is conceptualized as a tree with leaves - ObservableCollection of a class, Leaf

▪ Leaf holds current level Properties and subleaves

▪ Undo – uses a stack of ObservableCollection
of a class, Leaf; each change saves the collection
which means undo is merely a case of popping
the stack and refreshing the appropriate bindings

▪ Note that redo is left as an exercise for the reader
(advanced programming trail – see later)

22

Zone definer (4)

▪ Visual zone definer – lets you define highlighting zones via drag & resize

▪ IMGMana block has to be defined by hand (if used)

▪ Save in .bodx or .xml format

▪ Privacy setting to hide parts of the image
▪ note: this does NOT hide the data in the instrument

▪ Click on the image and drag out an area
▪ left-click is public, right-click is private
▪ click and hold to drag; resize from bottom right corner

▪ Click on a field to associate it with an area

▪ You can do the Exercises that are listed in
the comments

23

Zone definer (5)

▪ Security requirement for ZoneDEP, the data input program

▪ special role

▪ a user must have the ZoneDef role assigned

▪must supply appropriate commandline parms or nothing works

▪ this is a result of requiring the ZoneDef role as the first control

▪ a connection must be made to the server to check the role which demands server
info, userid etc.

24

Zone definer (6)

▪ IMGLink block

▪ was set up via INHERIT in B4; needs to be defined in the datamodel in B5

▪ holds the info about which image is associated with the record

25

Zone definer (7)

BLOCK TIMGLinkMana

SETTINGS

ATTRIBUTES = EMPTY,NODK,NORF

BLOCK TSheetInfos

BLOCK TSheetInfo

FIELDS

SheetName : STRING

SheetNr : 1..20

SheetStatus : 0..9

ENDBLOCK

26

Zone definer (8)

FIELDS

SheetInfo: ARRAY[1..20] OF TSheetInfo

ENDBLOCK

FIELDS

SheetInfos : TSheetInfos

RULES

SheetInfos.KEEP

ENDBLOCK

27

Zone definer (9)

Field definition

FIELDS
IMGLinkMana: TIMGLinkMana

28

Zone definer (10)

▪ As you have seen, these samples come in various degrees of difficulty

▪ You can follow the API samples with increasing difficulty and usefulness (C#
mostly)

▪ DataEntry, DataInterface, DataLink, DataRecord, Meta
▪ BulkUserAdd
▪ CustomClockWpf, SpeechWpf, PyCustomWpf (IronPython)
▪ SurveyManagement (MVVM VB.Net)
▪ AuditWorkshop
▪ MenuWpf
▪ Grid data editor
▪ Data Entry Verification
▪ Zone definer
▪ Data bridge (if it’s finished)

29

Advanced programming trail

	Slide 1: Blaise 5 Data Entry Verification & ZoneDef samples
	Slide 2: Background (1)
	Slide 3: Background (2)
	Slide 4: What is Data Entry Verification?
	Slide 5: Data Entry Verification (1)
	Slide 6: Data Entry Verification (2)
	Slide 7: Data binding
	Slide 8: Model-View-ViewModel (1)
	Slide 9: Model-View-ViewModel (2)
	Slide 10: Model-View-ViewModel (3)
	Slide 11: Model-View-ViewModel (4)
	Slide 12: Model-View-ViewModel (5)
	Slide 13: Model-View-ViewModel (6)
	Slide 14: Data Entry Verification (1)
	Slide 15: Data Entry Verification (2)
	Slide 16: Data Entry Verification (3)
	Slide 17: Data Entry Verification (4)
	Slide 18: Data Entry Verification (5)
	Slide 19: Zone definer (1)
	Slide 20: Zone definer (2)
	Slide 21: Zone definer (3)
	Slide 22: Zone definer (4)
	Slide 23: Zone definer (5)
	Slide 24: Zone definer (6)
	Slide 25: Zone definer (7)
	Slide 26: Zone definer (8)
	Slide 27: Zone definer (9)
	Slide 28: Zone definer (10)
	Slide 29: Advanced programming trail

