Transforming Survey Paradata
Laura Yoder, Andrew Piskorowski, and Mark Simonson
University of Michigan, Survey Research Center

1. Abstract

Paradata that are captured during the survey process are a valuable source of information
in helping us understand and improve the data collection process.

Paradata which are linked directly to the administration of a survey instrument are collected
automatically through the Blaise software (i.e., audit trail). The ADT file from Blaise 4 has
been valuable in understanding interviewer behavior. With Blaise 5, we have been able to
widen the collection of paradata to include behavior on web-SAQ (self-administered
questionnaires) and/or mixed mode projects (i.e., interviewer and web-SAQ combined).

The main focus of this paper will be to share the results of a utility to automatically parse
these sources of paradata from Blaise 4 and Blaise 5 into usable tables for analysis,
reporting and quality control. The data from each version can be stored together and used
in conjunction with other systems like time keeping, expense, survey data, and sample
management. This paper will identify and demonstrate:
e Parsing the Blaise audit data (from 4.8 or 5.x versions) into relation tables (or CSV
files)
e Examples of how to use these data for quality control, reporting purposes and as a
backup copy of survey results
e Calculating useful paradata measures from these data (e.g., time on/time between
page, last question seen/answered)
e Aggregating the data at various levels (e.g., page-level, session-level, respondent-
level)

In addition, reporting tools such as SSRS (SQL Server Reporting Services), Excel, and
Power Bl are used to distribute the data to various user groups (e.g., Pls, production
managers, statisticians, etc.). The resulting output is also available in a SQL database and
can be accessed using other reporting or analysis tools. The transformation techniques
and standard paradata, reporting can be implemented by any user of Blaise 5 paradata to
enhance the use of these data.

2. Introduction

The UM Survey Research Center and other groups have previously written a number of
papers and presentations about Blaise audit information and survey paradata more broadly.
The focus of this paper will be a new tool developed by the University of Michigan Survey
Research Center (UM-SRO Audit Parser +) that can parse both Blaise 4 and Blaise 5
formats and output the information into a standard relational database format that can be
integrated into the broader survey system environment.

Although the format and information contained in Blaise 4 and 5 audit trail files is quite
distinct, there is enough similarity that we have have been able to design a set of tables that
can capture information from both systems. In general (but not always), Blaise 4 offers a
subset of information available in Blaise 5. Therefore, some fields (columns) in the
paradata tables may be empty for a Blaise 4 project. One major difference is the

263

introduction of “Page” events to Blaise 5 - a page can have one or more fields displayed
and has its own set of events. For Blaise 4 projects, there will be no Page level information.

Based on this information, the basic structure of our paradata information are as follows,
with one to many relationships (parent to child) moving left to right:

Blaise 5 structure

Case level (CaseSummary table) — Audit Session(s) (ADTSession) — Audit

Pages (ADTPage) — Audit Fields (ADTField)

Blaise 4 structure
Case level (CaseSummary table) — Audit Session(s) (ADTSession) — Audit Fields

(ADTField)

3. Blaise Paradata Native Formats - a brief overview

Blaise 4 stores audit information in a delimited text file and Blaise 5 uses SQLite or SQL
Server format. Due to this difference, the parser program needs to be flexible enough to
read and write to a variety of formats. In addition, while there is a structure to the
information in the Blaise audit files, effective parsing requires code that can easily
manipulate and extract string information.

Below are small snippets of raw audit data used to provide context make apparent why a
parser application is needed.

Il'able 1. Blaise 4 audit data

1:49:

2/ 21

2/ 21

/21

f20 i L
*5/2/2018 12:31
"5/2/2018 12:31
"5/2/2018 12:31
®*5f2/2018 12:31
*5/2/2018 12:31
"5f2/2018 12:31
"5f2/2018 12:31:
"5/2/2018 12:31
"5/2/2018 12:31:
"5/f2,/2018 12:31:
"5/2/2018 12:31:
"5/2,/2018 12:31:
"5/2/2018 12:31:
"5/f2,/2018 12:31:
"5/2,/2018 12:31:

HE |
9
9
=0
=
A
=5
:5
=

(=]

[T TS T OV N

W o

3

s 008
1985
1701
1702
1840
=113
oz7
028
052
$2583
:408
L i

2 PM"™ "Enter Form:1","Key:PCT1011 -
2 PM","Merafile name:C:\BlProj\BFY PROD\InstrumentMain‘Storage\2018-04-12,14,00,00\BFY Bas
2 PM","Merafile Limeskamp:Thursday, April 12, 2018 1:59:46 PM"

BM™ "WinUserName: tumsms11™

PM"™ "DictionaryVersionInfo:0.0.0.0"

PM"™,"Enter Field:VerifyR","Status:Normal"”,"Value:"

PM™, " (KEY:}1[ENIR]"

BM" "Action:!:Store Field Data","Field:VerifyR"

PM"™ "Leave Field:VerifyR", "Cause:Next Field","Status:Normal™, "Value:1"
PM"™,"Enter Field:VolStatement™,"Status:Normal™,"Value:"

PM™, " (KEY:}1[ENIR]"

PM"™ ,"Action:Store Field Data”,"Field:VolStatement™

PM™ "Leave Field:VolStatement™,"Cause:Next Field"™,"Status:Normal™, "Value:1"
PM"™,"Enter Field:xRecordIwConsent™,"Status:Normal”,"Value:"

BM™, " (KEY:}1[ENIR]"

PM"™ ,"Action:Store Field Data”,"Field:xRecordIwConsent™

PM"™ "Leave Field:xRecordIwConsent™, "Cause:HNext Field","S5tatus:Normal”,"Value:1"
PM","Enter Field:Section B.CIIntro","Status:Normal","Value:"

PM™, " (KEY:}1[ENIR]"

1 PM","Action:S5tore Field Data","Field:Section B.CIIntro"

PM","Leave Field:Section B.CIIntro","Cause:Hext Field","Status:Normal", "Value:1"
PM","Enter Field:Section B.S5ex0fChild","Status:Normal"”, "Values:"

PM", " (KEY:}1[ENTR]"

PM","Action:Store Field Data","Field:Section B.S5exOfChild”

PM", "Leave Field:Section B.SexO0fChild","Cause:Next Field","Status:Normal"”,"Value:

PM", "Enter Field:Section B.ChildNameF","Status:Normal"”, "Valus:"
PM", " (KEY:) 1[ENTR]"
PM","Action:5tore Field Data","Field:Section B.ChildNameF™

& PM","Leave Field:Section B.ChildNameF","Cause:Next Field", "Status:Normal","Value:

PM", "Enter Field:Section B.ChildNameM","Status:Normal"”, "Valus:"
PM™, " (KEY:) 1 [ENTR]"
PM","Action:5tore Field Data","Field:Section B.ChildNameM"

im

Table 2. Blaise 5 audit data

264

tsadjusted

eventorder | content

timestamp
| 04/20/2018 15:04:27.863 4/20/2018 15:04:27 60 <LeaveFieldEvent FieldName="5ecA Continulnterview.AD13_Continue” Value="1" AnswerStatus="Response" />
¥ 04/20/2018 15:04:27.863 | 4/20/2018 15:04:27 70| «ActionEvent Action="NextField()" />
| 0472072018 15:04:28.888 | 4/20/2018 15:04:28 10| «UpdatePageEvent LayoutSetName="HRS_lwer" Pagelndex="4" />
[04/20/2018 15:04:28.888 | 472072018 15:04:28 20 < EnterFieldEvent FieldMame="SecA.Relations.A167_A028_RinNHome" AnswerStatus="Empty" />
i 04/20/2018 15:04:49.971 .4_-*’20_.-’201 815:04:49 40| <KeyboardEvent KeyStrokes="1" />
| 0472072018 15:04:50.435 | 4/20/2018 15:04:30 60| <LeaveFieldEvent FieldName="5Sec/A Relations.A167_AD28_RInNHome" Value="1" AnswerStatus="Response" />
i 04/20/2018 15:04:50.435 | 4/20/2018 15:04:50 70| =ActionEvent Action="NextField(" />
[04/20/2018 15:04:51.698 | 472072018 15:04:51 10 < UpdatePagebvent LayoutSetName="HR5_lwer" Pagelndex="9" />
| o4/20/2018 15:04:51.698 | 4/20/2018 15:04:51 20| <EnterFieldEvent FieldName="5ecA.Relations.A167_AD28_RInNHome" Value="1" AnswerStatus="Response" /=
[04/20/2018 15:05:05.544 | 4/20/2018 15:05:05 30 =ToggleVisibilityEvent ControlName="ua_3ag" />
i 04/20/2018 15:05:08.720 | 4/20/2018 15:05:08 30| <« ToggleVisibilityEvent ControlName="ua_3ab" />
[04/20/2018 15:05:40.246 | 4/20/2018 15:05:40 30| =ToggleVisibilityEvent ControlName="ua_3ab" />
il 04,/20/2018 15:05:42.603 | 4/20/2018 15:05:42 60 | <LeaveFieldEvent FieldName="5ecA Relations.A167_A028_RInNHeome" Value="1" AnswerStatus="Response” />
| 0472072018 15:05.42.603 | 4/20/2018 15:05:42 70| < ActionEvent Action="NextField()" />
il 04/20/2018 15:05:43.619 | 442072018 15:05:43 10| «UpdatePageEvent LayoutSetName="HRS5_Iwer" Pagelndex="9" />
| 0472072018 15:05:43.619 | 4/20/2018 15:05:43 20| <EnterFieldEvent FieldName="5ecA.Relations.A167_AD28_RInNHome" Value="1" AnswerStatus="Response" />
il 04/20/2018 15:05:50.644 | 4/20/2018 15:05:50 0 < KeyboardEvent KeyStrokes="[BACK]5" />
il 04/20/2018 15:05:53.008 | 4/20/2018 15:03:53 60 | <LeaveFieldEvent FieldName="5ecA Relations.A167_AD28_RInNHome" Value="3" AnswerStatus="Response” />
| o4s2072018 15:0%:53.008 | 4/20/2018 15:05:53 70 = ActionEvent Action="NextField(}" />
il 04/20/2018 15:05:53.734 | 4/20/2018 15:05:33 10| <UpdatePageEvent LayoutSetName="HRS5_Iwer" Pagelndex="12" />
| /2072018 15:05:53.734 | 4/20/2018 15:05:53 20| <EnterFieldEvent FieldMame="5ecA.Relations.AD26_Rmarried" AnswerStatus="Empty" />
il 04/20/2018 15:06:10.000 | 4/20/2018 15:06:10 40 <KeyboardEvent KeyStrokes="5" />
[T 04/20/2018 15:06:10.488 | 472072018 15:06:10 60 ! <LeaveFieldEvent FieldName="5ecA Relations.A026_Rmarried"” Value="3" AnswerStatus="Response” />
| 0472072018 15:06:10.488 | 4/20/2018 15:06:10 70 <ActionEvent Action="NextField(" />
il 04/20/2018 15:06:11.059 | 4/20/2018 15:06:11 10 P UpdatePageEvent LayoutSethlame="HRS_lwer" Pagelndex="12" />
i 2072018 15:06:11.059 | 4/20/2018 15:06:11 20| <EnterFieldEvent FieldName="5ecA.Relations.AJ0Z7_Rpartnerd” AnswerStatus="Empty" /=
il 04/20/2018 15:06:15.928 | /20/2018 15:06:15 0 KeyboardEvent KeyStrokes="5" />
i 04/20/2018 15:06:16.335 | 4/20/2018 15:06:16 60 <LeaveFieldEvent FieldName="5ecA Relations.AD27_Rpartnerd” Value="5" AnswerStatus="Response” />

While the audit data contains a wealth of detail, it looks a bit messy and is not easily be
used “as is”. If only the information were structured in a manner we could use for reporting
and other purposes!

So, rather than go into detail about the native formats (that is what the Parser Application is
for, after all), we will outline the structure and key components that are being parsed and
how these relate to the output data that is stored in relational tables.

265

Audit data structure conceptualized

SamplelD = “ABC123", Blaiselnstrument = “AcmeSurvey”

Session 1 start

Session 1 end

Session [n] start

| |

Survey Complete

One key takeaway from the figure above is that there are one or more sessions for each
respondent survey. The audit data provides information about the session itself at the
start and end of the session, such as timestamps, device used, browser type and whether
the session was suspended or the survey was completed (except when the session is
closed unexpectedly).

Once a session starts (assuming it is not shut down immediately), typically a page is
displayed and then a field or set of fields within the page are displayed (in Blaise 4, there is
no “page” event, but the field concept is similar). The audit information captures the page-
level information and then the first field that is ready for input (where the input cursor
resides). If the user enters some data (via keystrokes or selecting from a control like a
radio button or drop-down), the input information is stored. Once a user moves to the next
field or page, additional information is captured.

In the diagram, we have a reference to “Action* events”. Note that Blaise 5 captures most
everything as some type of “event”, and within this event you have various key-value pairs.
For example: KeyboardEvent KeyStrokes="1" is a keyboard event with a key-value pair of
keystrokes="1". There also something called an “ActionEvent” - for example, ActionEvent
Action="NextField()". The Action events are quite common and our output database has

266

columns to generically capture these events. But there are many other possible events (for
example, GoToUriEvent, ToggleVisibilityEvent, SuppressSignalEvent, etc.). For simplicity,
the diagram uses “Action*” as a way to refer to both Action and all these other type of
events that only occur in certain circumstances.

4. The Audit Parser Application and Output Database Structure

To combat the proliferation of parsing tools and the resulting difficulties in consistently using
the paradata information for reports and applications, UM SRC decided to build a generic
parser application that can process all the different types of Blaise audit formats and output
to a standard set of relational database tables. The result is that instead of focusing
resources on the different parsing routines and understanding the unique set of information
created by these routines, the focus would shift to understanding and querying a standard
relational database created by the parser application.

4.1 How it works
The UM-SRO Audit Parser application was designed to do the following:

e Understand both Blaise 4.8 and Blaise 5 audit trail formats.

e Be able to read and write to and from text based delimited files, SQL Server tables
and SQL Anywhere tables.

e Allow a “manual” mode, where a user selects a case to parse and can view the
results.

e Allow a “batch” mode, where the program runs on a scheduled basis and processes
multiple cases.

e Do all this with a minimum number of application dependencies, so the program can
run on a user's PC or on a Server.

In addition, the application supports two basic approaches to finding and parsing audit
information. One approach is to leverage Survey Management System (SMS) information
about case status and use this information to find and process the Blaise audit trail data.
The other approach is “self discovery” - based on an instrument id and file/database
location, process all audit data that are found. In both cases, we need a mechanism to
track what has already been processed and what still needs to be processed.

While the “parsing” part of the application is somewhat complex, the key to this application
is really the output data model. There are trade-offs between capturing all the detail
provided by the audit data and having a database that is easy to use, efficient and can be
queried by various stakeholder groups, applications and reporting systems.

The resulting database model (implemented on SQL Server but generic enough for most
any relational database system) mirrors the basic structure of the audit data itself. There
are the

four tables make up the core of the data model.

Study Paradata Database tables (output from Parser application)

267

e CaseSummary - sample line level information with one record for each case for a
given Blaise survey instrument (within the audit data the case id is called “key” or
“KeyValue”, in CaseSummary it is “Sampleld”).

e ADTSession - Blaise audit data session level data for each case. There is at least
one session for each survey. The session has a unique number for each case
which stored in the “BlaiseSession” column.

e ADTPage - Blaise audit data information at the “Page” level (Blaise 5 only). For
Blaise 4, there will not be a record in this table.

e ADTField - Blaise audit data at the field level for each case. This is the most
complex set of information. While some information (e.g., navigation action) falls
outside the field event itself, in our model we decided to collapse everything
between the “Enter Field” event and the next field’s “Enter Field” event into one
record.

The tables are “relational”’, that is, there is a parent-child relationship between them that
allows you to use SQL code to join information into a single result set. The tables are
ordered above to reflect the one-to-many relationship, from CaseSummary to ADTSession
(for each case, one or more sessions), to ADTPage (for each session, one or more pages)
to ADTField (for each page, one or more fields).

268

Audit data structure relationship to output database tables

In this section, we’ll discuss how raw audit information is parsed and transformed into data
that are part of a relational database. The relational database is the creation of UM SRC. It
is modeled on the Blaise audit data and some naming conventions are similar but, to be
clear, the tables and field names used are UM SRC conventions.

The structure of the current set of tables comes from common elements found in various
other audit data tables created previously at UM SRC, an analysis of the Blaise 5 audit
structure, and the common reporting and use case needs we have identified.

We also note that because Blaise uses “FieldName” to reference the unique question item
name, this may cause a little confusion at times. Therefore, we will reference database
“fields” as “columns” or “column names”. These table names and column names that are
part of the output tables are usually referenced in the form of tableName.columnName.

So let’s take our most potentially confusing concept, the Blaise “FieldName”, and try to sort
out how we store it in the database as an example. The Blaise “fieldname” value from the
audit trail (for our example, let’s say we have a field named “Gender”) is parsed and stored
in a table called ADTField. The column name where it is stored is also called “fieldname”.
The resulting table reference is ADTField.FieldName and for this specific value, “Gender”,
we can make the notation ADTField.FieldName = “Gender”.

4.2 General Information About the Survey

The most general information about a given case and survey are stored at the Case-level
and Session-level. Here we summarize some of the key information that is available.

4.2.1 Case Level

The CaseSummary table contains essentially three types of information in addition to the
Sampleld for the respondent:

1. Audit data processing and summary information.
2. Sample Management System (SMS) information.

3. Interviewer Quality Control (QC) information.

The parser can work without any SMS or Interviewer information, but we have added these
for additional integration capabilities and QC reporting.

269

Case-level identity information

CaseSummary.Sampleld: The respondent identifier, usually named “Key” or
“KeyValue” in the Audit data.

CaseSummary.InstrumentName: The Blaise instrument name for the survey.

CaseSummary.Instrumentld: The Blaise Instrumentld GUID key (Blaise 5).

Case-level Audit data information

CaseSummary.ADTisComplete: True if the survey is complete based on the audit
data information.

CaseSummary.ADTSessions: Number of sessions in the Audit data.

CaseSummary.ADTCompleteDT: Timestamp of when survey was completed
based on the audit data.

CaseSummary.ADTLanguage: Primary language of the survey based on Audit
data information.

SMS source data

CaseSummary.SMSisComplete: True if the survey is complete based on the SMS
information.

CaseSummary.SMSSessions: Number of sessions based on the SMS.

CaseSummary.SMSCompleteDT: Timestamp of when survey was completed
based on the SMS.

CaseSummary.SMSLanguage: Primary language of the survey based on the SMS.

Additional audit summary information (which comes from Sessions or Fields) has also
been added to the CaseSummary table to allow a quick query of only this table (no joins
needed) to get often requested information.

Audit summary information

CaseSummary.ADTSurveyTime: Total time (in minutes) for a survey based on the
audit data (will equal the sum of all the session duration times).
CaseSummary.SurveyQVisited: Number of unique questions (fields) visited by
the respondent (each field name is only counted once).
CaseSummary.SurveyQAnswered: Number of questions with an answer value
provided (based on the last visit to the field).

Interviewer quality control information is also available for some projects. At UM, this
information feeds into the Interviewer QC application.

270

Interviewer QC information

CaseSummary.SMSlwer / CaseSummary.ADTlwer: Interviewer id from the SMS
system and/or audit data (when available).

CaseSummary.InterviewOrder: For a given interviewer, what is the order of the
interview (based on completed date and time).

CaseSummary.MediaFiles: Number of media files found for this interview (e.qg.,
video recordings or audio recordings).

4.2.2 Session Level

The ADTSession table contains session level information for each case based on the
Blaise audit data session records. At minimum, a survey must have at least one session. If
a survey is restarted, there may be more than one session. The session has an indicator
(“completed”) to indicate if the survey has been completed in the given session.

Because Blaise 5 has multimode capability, the session information also helps us
determine the mode of the interview, in addition to the type of device being used, the device
height and width and other information.

Key Session level columns

ADTSession.BlaiseSession: Session number (unique for each Sampleld).

ADTSession.Completed: True if the survey is completed in this session (last
session).

ADTSession.DeviceType: Type of device derived from information in the session
(PC, Tablet, SmartPhone).

ADTSession.Mode: Mode (CATI, Web, CAPI) used for session data. For a mixed
mode project, sessions may have different modes. Currently, the parser
derives the mode from various other fields.

ADTSession.LayoutSetName: Name of the page LayoutSetName (from the first
page of the session).

ADTSession.OSName: Operating System Name (e.g., Windows, Mac, Android,
etc. which is derived from the audit OS string).

ADTSession.Browser: Name of browser, if applicable.

ADTSession.DisplayWidth: User device display width .

ADTSession.DisplayHeight: User device display height.

271

ADTSession.LastField: Name of the last field entered in the session (parser stores
last fieldname found for the session in this column).

ADTSession.LastFieldAnswered: Name of the last field with an answer value in
the session (parser finds this information and stores it in this session
column).

4.3 Timings

One of the most important pieces of information the audit data provides are timestamps at
various levels of detail which allow us to calculate timings (durations). This timestamp
information and duration information (usually in minutes) is parsed, calculated, and stored
in the various tables.

At the highest level, we have Session timing information. Each session has a begin and
end timestamp and we calculate the Session duration as the difference between these. If a
survey only has one session, the Session duration equals the total survey time. For
multiple sessions, however, the total survey time is the sum of the Session durations.

Here is a summary of Session and Page level timing information. There are timestamp
fields available for Session and Page, but the calculated Duration time (done by the Parser
application based on the timestamp fields) is usually what is needed for reporting.

Case, Session and Page level duration fields

CaseSummary.ADTSurveyTime: Total survey time in minutes (calculated by
Parser from Session durations).

ADTSession.SessionDuration: Time (in minutes) spent in a given session.
ADTSession.CumulativeDuration: Cumulative time (in minutes) for a given
session and sum of previous sessions.

ADTPage.PageDuration: Time (in minutes) spent on a given page. The parser
calculates this using the audit timestamp associated with a given page
UpdatePageEvent and then uses the next page UpdatePageEvent
timestamp as the end time.

Note that the final session ADTSession.CumulativeDuration will equal
CaseSummary.ADTSurveyTime.

272

Field level timings can get a little more complex. This section describes some different
types of timing information available at the field level.

Key timing columns at the Blaise field level

ADTField.EnterTS: Timestamp associated with the Enter Field event (when the
cursor moves into the field).

ADTField.LeaveTS: Timestamp associated with the Leave Field event (when the
cursor moves out of the field).

ADTField.KeystrokeTS: Timestamp at beginning of a keystroke entry for the field.

ADTField.NextFieldBegTS: The EnterTS of the next field (if it exists).

ADTField.Duration: Duration in seconds between Enter and Leave.
ADTField.DurationFull: Duration in seconds between Enter and the next Field
Enter.

1. The duration between Enter and Leave field timestamps is a measure that only
calculates the time within the field. Once the cursor leaves the field, the timing
stops. Note that the sum of all these timings will likely be less than the total time for
the page.

| Enter Field)I ADTField.EnterTS (timestamp)

Field Duration N

ADTField.Duration (Seconds)

<user input>

(enter to leave)

Leave Field H& ADTField.LeaveTs (timestamp)

Enter Field |

1 Leave Field [

2. The duration between Enter event for a given field and the Enter for the next field
captures the entire time on the field plus any events that may occur after the leave
field event. For example, some complex conditional logic may have to execute or
there can be screen displays that require a little extra time to render. We have found
this is the most consistent measure of “field” time (as some versions of Blaise or
modes do not always have accurate Leave Field times currently). Note that
measure 1 should always be less than or equal to this measure.

273

| Enter Field

<user |nput> \ ’

ADTField.EnterTS (timestamp) |

Enter Field to Next

2. _I Leave Field l

k|
| EnterField =
U

Field Duration

9{ ADTField.DurationFull (Seconds) ‘

’ Leave Field }

=

—

ADTField.NextFieldBegTs (timestamp) |

3. The time between EnterTS and KeystrokeTS is typically the time it takes to read the
item before starting to answer. This information could be combined with length of
the question text (not in the audit data) to get an idea of interviewer speaking speed
or respondent reading speed (web survey).

—

¥ ‘ JW}\E\}? - |

| Leave Field

Enter Field ‘X_\

ADTField.EnterTS (timestamp)

“

4.4 Answering the Questions

/]
J/

N

Enter Field until Start of Keystroke(s)
<user input> (L&
\ ADTField KeystrokeTs (timestamp)

Depending on the type of question, there is typically keystroke information available or
what Blaise terms “category” information (selections from a drop-down list or radio button).
There are also “special answers” entered via special “hot” keys or menu items, such as
Ctrl-D for “Don’t Know”.

In addition to whatever action is taken to indicate an answer, the audit trail also stores any
answer information that is already in the field before the user edits the data. The
information is stored in “ADTField.EnterAnswerValue” and may be there because of a
“preload” data or because the question is being revisited and was previously answered.

If this is the first visit to the field and there is answer value
already present, isPrePopulated is set to TRUE

ADTField.EnterAnswerValue ‘ ‘ ADTField.isPrePopulated |

N —| Enter Field |~— %‘ Answer Value (on Enter) ’

Or “special answer” selection

keystrokes or “category” selection

‘— >| User input

ADTField.Keystroke or

| ADTField.KeystrokeCount |

N | leave Field

ADTField.Category or
ADTField.SpecialAnswer
———»{ Answer Value (on Leave) ADTField.AnswerValue ADTField.isFinalAnswer

274

data and isFin

If last time visiting field, this will be the “final”

alAnswer is set to TRUE

After the user is done editing the answer, the “final” data are stored in the column
ADTField.AnswerValue, unless they fall into the category of a Special Answer, in which
case they are stored in the column ADTField.SpecialAnswer (as in the example above, Ctrl-
D will result in ADTField.SpecialAnswer = “Don’t Know”).

Because a field can be visited more than once, you need to know the last time a field
was edited to get the final answer that will be in recorded in the main survey database. For
this, we add a flag in the column ADTField.isFinalAnswer. By querying only the fields
marked as ADTField.isFinalAnswer = True you can obtain the actual survey data that
should match what is in the Blaise data file.

A summary of fields related to answering a question item

ADTField.EnterAnswerValue: Any data associated with the field before user
input.

ADTField.IsPrepopulated: True if this is the first visit to the field and
EnterAnswerValue is not empty.

ADTField.Keystroke: Keystroke values entered by the user (if applicable).

ADTField.KeystrokeCount: The number of keystroke values typed from
ADTField.Keystroke as calculated by the Parser.

ADTField.Category: Category values selected (radio or drop-down type question),
stored like “5” or “5-1-2”.

ADTField.AnswerValue: The actual answer value for the question when the user
leaves the field.

ADTField.SpecialAnswer: For “Special Answer” type of responses (like using Ctrl-
D to select “Don’t Know”), the answer value is stored here.

ADTField.isFinalAnswer: True if this is the last ADTField.AnswerValue for a given
field (final data for a field). This is calculated by the Parser application.

275

4.4.1 Additional Information About “Keystroke” and “Category” Data

The keystroke field captures all the keystrokes recorded by the audit data. Keystroke
information may be as simple as:

ADTField.Keystroke = “1”
Or look more like:
ADTField.Keystroke = “R says DK because of AIBACK]memoryt[BACK]”

The column “KeyStrokeCount” sums up the number of keystrokes for this field (counting
special keys like “[BACK]” as one keystroke. For the second example above, it will be:

ADTField.KeyStrokeCount = 31

The column “AnswerValue’ is what Blaise records as the answer for this question. For the
second example above:

ADTField.AnswerValue = “R says DK because of memory”
For questions that already have data (either because the respondent returned to this
question or it was “preloaded”), the information is stored in “EnterAnswerValue”. If there is
an EnterAnswerValue and the corresponding AnswerValue is different, it indicates the value
was changed.
The column “Category’ is like Keystroke, except it stores the selections made from a
control. Multiple selections are separated by a hyphen (-), so selecting answers 1 and 2
looks like this:
ADTField.Category: 1-2
If the question allows multiple responses, the AnswerValue would look like this:
ADTField.AnswerValue: 1-2

If only a single selection is allowed, the last selection is what will be the answer:

ADTField.AnswerValue: 2

276

4.5 User Navigation

Capturing how the user navigates through the survey is one of the unique things available
in the audit trail information. It is important to understand that there is typically both
forward and reverse navigation possible. So, a given page (identified with a Blaise
Pagelndex number) and a given field (identified with a Blaise FieldName) can be visited
one or more time.

User navigation columns (all calculated or derived by the Parser application)

ADTPage.UserPageOrder: Order of pages as navigated by the user. Is unique
across the entire survey.

ADTPage.PageVisitNumber: Visit number for same page. (If same page visited
twice, 2nd time will have a value of 2).

ADTField.UserFieldOrder: Order of fields as navigated by the user. Is unique
across the entire survey.

ADTField.FieldVisitNumber: Visit number for same field. (If same field visited
twice, 2nd time will have a value of 2).

ADTField.LeaveFieldNav: A value of 1 indicates next field and 2 indicates next
page, -1 indicates previous field and -2 indicates previous page.

In the database, we capture the overall order of navigation through pages with
ADTPage.UserPageOrder and through fields with ADTField.UserFieldOrder.
UserPageOrder and UserFieldOrder continue across sessions and are unique for a
respondent. By ordering results by UserPageOrder and UserFieldOrder, the exact
sequence of events for a survey can be tracked.

Note that ADTPage.Pagelndex and ADTField.FieldName, however, may not be unique. In
the tables, we have added ADTPage.PageVisitNumber and ADTField.FieldVisitNumber
to indicate the visit number. Every pageffield in the audit data will have a VisitNumber = 1.
If the pageffield is visited again, the parser increments the VisitNumber and saves another
record in the database tables.

The direction of navigation after leaving a field is captured in ADTField.LeaveFieldNav. A
positive number indicates forward navigation and a negative number indicates backward
navigation. A value of 1 indicates next field and 2 indicates next page, -1 indicates previous
field and -2 indicates previous page.

277

Basic example of how the database tracks a user navigating through survey fields
and answering questions

Using these concepts, here is a basic example. For the example, we will use two
questions with Blaise FieldNames of “Gender” and “Age”. Let's say Gender is selected
from a pick list (Female = 1 and Male = 2) and Age is entered as a number.

The user will go to Gender and select the answer for Female (1), go the the Age question
and enter “25”, and then return to the Gender item and change the answer to Male (2). How
does this look in our Paradata field table (ADTField)?

The record in ADTField for the first visit to Gender looks something like this:

ADTField.UserFieldOrder = 1
ADTField.Fieldname = “Gender”
ADTField.FieldVisitNumber = 1,
ADTField.Category="1"
ADTField.AnswerValue="1"
ADTField.isFinalAnswer = False
ADTField.LeaveFieldNav = 1

The record in ADTField for the next field, Age, where the user enters and answer and then
returns to the previous field (Gender) looks something like this:

ADTField.UserFieldOrder = 2
ADTField.Fieldname = “Age”
ADTField.FieldVisitNumber = 1,
ADTField.Keystroke="26[Back]5”
ADTField.AnswerValue="25"
ADTField.isFinalAnswer = True
ADTField.LeaveFieldNav = -1

And, finally, returning to Gender for the final time, changing the answer and navigating to
the next page:

ADTField.UserFieldOrder = 3
ADTField.Fieldname = “Gender”
ADTField.FieldVisitNumber = 2,
ADTField.InitialAnswerValue="1"
ADTField.Category = “2”
ADTField.AnswerValue = “2”
ADTField.isFinalAnswer = True
ADTField.LeaveFieldNav = 2

4.6 Action Events Within and Between Fields

278

There are many different types of “actions” that Blaise records and these may or may not
be of interest to users of the data. To simplify things, there are two “action” columns for
each record, one for actions while within the field and the other for actions after leaving the
field. There are also some special columns to store other types of events.

As mentioned earlier, a single record for a Blaise Field includes all the audit information
between the field’s Enter and Leave events, as well as any events that occur before the
next field Enter event. Every field visit, therefore, has one record in the ADTField table and
this record contains all the information from the time the user enters the field until the time
the user enters the next field (or ends the survey).

,‘ Enter Field L \

<user input> Action* event(s) 1| »| ADTField.Action

ADTField
record
information

| Leave Field [
- ADTField.LeaveFieldAction

ADTField.GoToUriEvent

ADTField.hasSuppressSignal

]

“Action” and other Blaise events (within a field and after “Leave Field”)

ADTField.Action: Name of Blaise action or other events that occur before the
“Leave Field” event (e.g., AssignField({Expression State.ActiveFieldName}#
'DontKnow').

ADTField.LeaveFieldAction: Name of Blaise action that occurs after leaving field
(e.g., “NextField()”) or other types of events that occur before entering the
next field.

ADTField.hasSuppressSignal: True if LeaveFieldAction has a “SuppressSignal’
event (e.g., “SuppressSignal(Secl.check_1_)")

ADTField.GoToUriEvent: Launching of other programs (e.g.,
“C:\Blaise\Manipula.exe” or “C:\TechSmith\Camtasia Studio
7\CamRecorder.exe”.

279

4.7 Special ADTField Records: REMARKS

Remarks are stored as records in the ADTField table and are distinguished from field data
using the column ADTField.isRemark = TRUE to filter the records. This is different from the
ADTField.hasRemark column, which indicates a field that has an associated remark (but is
not the remark itself). The fieldname for a remark starts with the pound sign (#), so a
remark for Age would be named #Age.

The remark itself is stored in the ADTfield.AnswerValue column.. Therefore, another use
case for this data is to easily obtain all the user remarks entered into the instrument.

Remark related columns

ADTField.FieldName: For remarks associated with a given field, the fieldname
starts with # (e.g., #Age).
ADTField.isRemark: True indicates this record is a remark (not an answer field).

ADTField.hasRemark: True indicates the given field has a remark. In this example,

the record for ADTField.FieldName = “Age” will also have ADTField.hasRemark
= True.

280

5. Paradata As Part of a Survey Project System

With the Audit parser application converting raw audit information into tables, the Study
Paradata database can be integrated as one part of the overall survey project system.

Study Paradata database as part of larger survey environment

_—
i i Blaise4 Audit J
Blaise5 Audit Survey Project System
e Ee——— :
Blaise5 CARI Log Blaised CARI log QC Reports

Project QC (Compare to SMS)

Survey Instrument (Diagnose issues)
Audit Parser Parse, Transform Interviewer

Application and Calculate Partial completes - last field

Operational Reports

Combine with other survey information at
case, interviewer or instrument level.
Mode, Device Type information

Study ol aneries Applications
Paradata SQL queries Interviewer QC application

Database Scriptwriter
Playback

Data

Backup of survey data results
Troubleshoot data issues

Research, Analysis
Cross-project analysis
Detailed paradata research

The image above summarizes some of the ways UM SRC is integrating the audit data into
the overall survey system via the Study Paradata database. In addition to reporting, which
will touch on in the next section, note that the Paradata database is also used by various
applications. In the past, these applications built in their own unique parsing routines, but
now they can leverage the Paradata database instead of having to support parsing code
(this issue was most apparent when moving from Blaise 4 to Blaise 5 as the parsing code
for version 4 would no longer work for version 5). Here are some other possible use case
examples for this data.

Use case examples for Study Paradata tables

e Backup of survey data. A query that filters on ADTField.isFinalAnswer = True and
includes ADTField.AnswerValue and ADTField.Fieldname will produce a set of data
results.

e Backup of remarks. Interviewer remarks can be exported with a simple query for
one case or the entire instrument.

e Quality control. Compare SMS information about survey complete status and
survey completed date and time with the Audit data.

281

e Intervene on potential issues proactively. For example, query for large numbers
or outliers such as number of sessions, survey time, field times or other anomalies
that may indicate a problem with the instrument, internet connectivity, user issues,
etc.

e Talk about “paradata” at your next social event and impress your friends.

6. Queries and Reporting - answering key questions

With the audit data parsed in a standard format, it allows for the development of many
different types of reports. The storage of the data in relational tables (in SQL) facilitates
easy access to the data from a variety of applications, including SAS, Excel, SPSS, R, and
Python. For our data manager group, the advent of the parsed audit data saved us
approximately 200 lines of SAS code used to create reports around survey timings.

Even without a reporting system or SQL queries, the Paradata information can be accessed
using common tools like Excel Power Query and then displayed in data tables, charts, pivot
tables, etc.

Note that as a best practice, at UM we recommend using database views and
parameterized stored procedures for most end-user access to the data. This not only can
further simplify access for the end user, but avoids user mistakes in creating custom query
joins or filtering data, ensures that data is consistent and results are replicated no matter
who uses the information.

Below are some examples of reports that use the Paradata tables. These are provided to
help “bring to life” how the paradata information can used for survey projects.

A simple, but effective report showing interview length by mode (for the same instrument).

lw Length by mode

IW average 119.43 103.18 103.90 145.57
IW median 106.55 103.36 100.69 143.82

282

The following report about number of sessions tells us how many attempts were needed to
complete the survey. For those cases that required several sessions, the data was looked
at in more detail to understand why so many sessions were required (which can be due to
instrument issues, connectivity issues, etc.).

Sessions® - Completes

SessionstoComplete | N | % |

1 173 425
2 114 28.0
3 63 15.5

4 18 4.4

o 17 4.2

6 6 1.5

7 4 1.0

8 5 1.2

9 3 0.7

10 i 0.2

12 2 0.5

27 1 0.2

*From Blaise audit data Total 407 100

A report about the type of devices used for a web survey combined with survey Cohort
information (although it could just as well be demographics like age, gender, or any other
variable of interest). This report is based on the last Session device used. A variation of
this report would be to look at those who have multiple sessions and switched devices or
comparing devices used for incomplete surveys. In this manner, we may find if
respondents are having more difficulty answering the survey with certain types of devices.

283

Devices Used* — Completes (N=407)

Device by Cohort
Overall
17% 31% 2.0% 4.4%

) (s es)
es %

1 es)

B Smartphone
% M Tablet
(Bedse)

- . mPC
j ses)

%
es)

100%
90% o2
80%
70%
60%
50% 1 E)_ (10
%
30%
0% E
10%

B PC mTablet ®Smartphone 0%

An Excel table created from the Paradata database. The difference between Total
Question visits and Distinct Questions tells us how many questions were revisited. The
difference between distinct questions and answered questions tells us how many of the
question fields were left unanswered.

We can supplement a report like this with drill down information such as the question fields
that had the highest number of revisits or highest percentage of being unanswered.

Average Survey Time 119.0 109.6 128.2
Average Total Question Visits 39.2 469.0 (510.8
Average Distinct Questions 395.0 455.5 r 510.3
Average Answered Questions 360.5 437.0 4933 |
Average Revisited Questions 1.2 135 0.6
Percent Revisited 0.3% 2.9% 0.1%
.Average Unanswered Questions 34.6 185 17.0
:Percent Unanswered 8.7% 4.1% 3.3%

284

Analyzing “no answer” distribution for each survey question in Excel. While this
information can come directly from the survey data, using the audit data we can confirm
how many answered or not based on only those who actually visited the question. And,
with the Paradata database, it is operationally easy to make this part of a regular reporting
process while the survey is in the field.

:isFinaIData 1 -
|Count Column Label ~
|Row Labels b Answer No Answer Grand Total
_Section_A.Cll 325 2 327
_Section_A.Cll_E}:P?_b 330 1 331
|Section_A.Q10 654 10 oo4
|Section_A.Q11 654 10 664
_Section_A.Cl12 652 12 664
|Section_A.Q13 652 12 664
_Sec‘tion_A.QBb_[Jec 460 154 614
|Section_A.Q13b_Decr 365 139 504
_Section_A.Clldl 649 15 664
_Section_A.Clld!b_Dec 442 181 623
|Section_A.Q14b_Decr 354 148 502
|Section_A.Q15 655 g 663
_Section_A.Cllﬁ 652 12 664
_Section_A.Cllﬁa_Dec 227 74 301
|Section_A.Q16a_Decr 170 46 216
|Section_A.Q17 645 18 663
_Section_A.Cll?a 538 115 653
_SEC‘EiOh_A.QlE 643 20 663
|Section_A.Q18a 503 150 653
|Section_A.Q19 647 17 664
_SEC‘tiGn_A.QlBE 454 158 652
_Section_A.Clla 276 48 324
Section A.Qla EXP2b 272 58 330
|5ection_A.c11e_Expzb 156 2 158
|Section_A.Q2 652 7 659
_Section_A.Cl2D 642 22 664
|Section_A.Q20a 434 162 646
|Section_A.Q21 651 13 664
Crarian A MO%a MnAan T ne AcC

285

An example of an Excel pivot table and chart that can be used to look at the data in a
number of different ways. Having Audit data in the database makes it easy to create pivot
views of the information.

4 A | 8 | c 0 E 6 H [
4 |completed 1 = PivotChart Fields
5
= - - = i Choose felds to add to report:
6 |Count of sampleid Device | v Browser 1} I
7] Browser Browser Total Grand Total eaccF
8 [Platform |~ |layoutSetName |.¥ Chrome Edge Firefox Intemetexplorer Safari :
2 [HTML self 192 67 53 61 = 436 43] StudyName
0] Self Small 18 4 1 2 3 £ B] ProjectName
11 HTML Total 20 n 5 6 n 46 169 /] DCName
12 Grand Total 20 n 54 6 n 69 69 [ProjectDataCollectionld
3l] sampleid
R 0 [] BlaiseSession
4 tiame ¥ Completed] Bl
B — [SessionBegTS
| Countof sampleid | o | SessionEndTS
. el
= 7] Completed
17 Platform and Browser g
= [] LastField
o 0% [] LastFieldAnsuered
= ["] SessionDuration
il e [] CumulativeDuration
» =
= 0 7] LayoutSetName
3 Device £2 = .,hya
| 60% Bronser .
b ik WBrowser - Sofar Dreg fields between areas below:
Ea el NS IMEEER AT Y ALTERS 1l LEGEND (SERIES)
) 2
bl mBrowser - Firefox e = [T
% 30% B &
= Mbroger-tiz Completed * ||| Browser
2 % mBrowser - Chrome
0
= 10%
il
2]
13_ Seif Self_Small
7 HTML
2 = AXIS (CATEGORIES) X VALUES
35 Platform = LayoutSeitiare = n
= : & T * Platform + | || Countof sampleid
g © Layoutseth
7 ayoutsetName
3
i
0

A simple Excel data table, using CaseSummary data, that can be filtered. For example,
you can find the survey that has 27 sessions!

4 H] J | L | N 0 I w | X I 2B | & |
i Sampleld n SurveyTime n Smevqmtaﬂ SurveyQVi ADTSessinnn
16 /0103970010 218.8277 415 _ 415 387 4 TRUE ENG 6/25/2018 12:05 3
|9pqom_53m1o | 193514 467 466 393 0 TRUE ENG 6/18/201816:51 6
162 |0138022020 183.1878 403 389 35 8 TRUE ENG 6/13/2018 16:41 10
845(0474581040 | 173414 45 | 423 400 2 TRUE ENG §/27/20180:11 3
437/0585891020 110.2411 M 8 326 0 TRUE ENG 7/3/2018 10:27 7
797/1351610010 13LI268 425 | 422 380 1 TRUE ENG 7/20/2018 20:05 4
007/1462340020 99.4402 m a1 321 1 TRUE ENG 7/10/2018 5:30 ¥
2775002117020 | 1182784 w9 387 u1 1 TRUE ENG 8/9/2018 17:26 5
406(5004260020 700545 O 433 403 2 TRUE ENG 6/25/2018 19:56 7
163|5019680020 429.8955 479 | 466 434 0 TRUE ENG 7/8/201819:13 7
369/5024660010 113.0084 s 375 28 1 TRUE ENG 8/7/2018 17:49 3
370/5024680010 184.743 551 548 522 2 TRUE ENG 7/23/2018 14:21 5
626/5218600011 137.3753 2% 294 w0 0 TRUE ENG 7/28/2018 15:52 3
679/524060011 1041733 303 | 93 263 a TRUE ENG 7/5/2018 20:36 3
715/5227510010 56.5474 330 389 362 1 TRUE ENG 7/10/2018 20:26 3
805/5238771010 91.0415 438 485 450 0 TRUE ENG 8/18/2018 12:44 2
149/5270780010 133.087 563 559 508 1 TRUE ENG 8/15/2018 15:39]
311/5288990010 1509883 353 | 1 Er 5 TRUE ENG 742018 12:20 L
6435343810010 111761 289 287 207 2 TRUE ENG 7/26/2018 15:17 5
TST|S360780010 150652 415 | 42 37 2 TRUE ENG 8/17/2018 2310 3

286

Using additional data from our SMS and combining on Sampleld, we can look at interview
length by interviewer experience and preferred mode of data collection.

Combined with data from sample management system

Iw_PrefMode Cohort L IwerExper N_iwlength Mean_iwlength Median_iwlength StDev_iwlength Min_iwlength Max_iwlength
FTF 1157 103.3127111 100.0245 31.00072803 40.5742 396.2678
FIF-E 5872 144.6993268 143.08615 38.87581184 33.2033 437.483
TEL 3006 103.0796926 103.10075 32.98908942 2.0548 313.1581
Wweb 704 118.0538178 105.63825 54.79536045 25.331 532.7911
FTF New hire 363 104.3972427 101.8254 30.66333789 42.73838 222.4892
FTF Mot project experienced iwer a0 99.212265 97.70635 27.985136 60.8847 193.0174
FTF Project experienced iwer 11 98.55875433 99.8347 26.59229221 64,2933 144.7301
FTF Project experienced iwer last wave 743 103.0739848 99.4256 31.40009562 40.5742 396.2678
FTF-E New hire 1706 146.5972143 145.23665 40.35017472 33.2633 437.483
FTF-E Not project experienced iwer 159 151.0236157 144.8047 40.31134317 51.8265 303.4432
FIF-E Project experienced iwer 38 158.1895632 159.10075 38.0422538 54.882 229.1455
FTF-E Project experienced iwer last wave 3969 143.5010434 142.1164 38.10540098 36.5119 420.8289
TEL New hire 1428 103.0207601 102.3225 33.2059803 2.6759 242.0938
TEL Not project experienced iwer 177 111.3743633 108.8599 33.88610293 6.3381 245.7088
TEL Other/unknown 38 96.54570526 92.74745 21.01411819 60.593 165.1183
TEL Project experienced iwer 72 100.1392181 102.7332 31.12927658 4.7271 221.9102
TEL Project experienced iwer last wave 1291 102.363972 103.1851 32.87861015 2.0548 313.1581
Web Other/unknown 7 106.5418143 102.5983 18.61962267 86.5101 141.3257
web Web - no iwer 697 118.1654161 105.6486 55.03168503 25.331 532.7911

In Excel, we aggregated field level data to get timing information (including percentiles) by
Section and LayoutSetName (small indicates it is for a mobile device, large is for a PC or
tablet... Median is the 50th percentile).

PCT75 PCT25 PCT10 |MaxDuration t
685 26.8754 16.137 7.273 1.546 0.93 1151.909 0.002 25.35901134

: I N Cnt MeanDuration
Large Section_A 31273 8.025459

|Small Section_A 2848 17.365277 10.2845 5052005 31.2734 17.5655 6.08725 2.4133 956.84 0.002 33.91680664
Large Section_E 7570 3.932094 2.305 10.29765 7.3137 4.18925 1.606 1.012 723.83 0.013 11.10421431
|Small Section_E 639 8.585547 5.987 20.2243 14.1836 8.906 4.073 29066 136.932 0.694 11.62375825
Large Section_End 1742 12.332176 5099 34.336 20.8937 12.17825 2.257 0.8937 1165.037 0.073 40.80553544
|Small Section_End 144 26.307958 12.953 74.6092 37.2273 21.8055 7.10275 3.464 498.41 1.987 57.60272442
Large Section_Intro 2258 7.446145 2404 20.1581 12.4866 5.97625 0.867 0.5584 B667.002 0.126 27.88038701
Small ‘Section_Intro | 153 10.953535 6.535 27.0712 23.607 12265 3.693 2.2472 96.416 1.103 13.72840386,
| ———

Section by Layout: Survey Times (Percentiles)

80
E_
K| 70
4 0
¥ u MeanDuration
'_ 50 u MedianCont
U pCTES
¥
i mPCTS0
¥ 30
"" mPCT75
i 20 mPCT25
. IL — m PCT10
I & L L& '8 | vk b
q o M - - : i
P
il Section_A Section_A Section_E Section_E Section_End Section_End Section_Intro Section_Intro
¥
- Large Small Large Small Large Small Large Small
i

287

